Zur Beschreibung der hydrologischen und hydrometeorologischen Prozesse werden diese zu Domänen und Ebenen zusammengefasst. Folgende Modellebenen werden in ArcEGMO unterschieden:
- METEOR zur Ermittlung der meteorologischen Modelleingangsgrößen und ihre Übertragung auf die im Rahmen der Abflussbildungsberechnung zu modellierenden Flächen,
- ABI zur Beschreibung der Abflussbildung,
- RD zur Beschreibung der Abflusskonzentration auf der Landoberfläche,
- GW zur Beschreibung der Abflusskonzentration im Grundwasser und
- Q zur Beschreibung der Abflusskonzentration im Gewässernetz.
Die Modellebenen METEOR und ABI bilden gemeinsam die Vertikalprozess-Domäne, RD, GW und Q die Lateralprozess-Domäne.
Wie Tabelle 7.1‑1 zeigt, können je nach Aufgabenstellung und zur Verfügung stehender Datenbasis die Modellierungen in den einzelnen Ebenen unterschiedlich detailliert bzgl. der Prozessbeschreibung und der Raumgliederung vorgenommen werden. Welche Raumauflösung für die einzelnen Ebenen gewählt wird, ist innerhalb der Steuerdatei ARC_EGMO.STE (s. Kapitel 3) festzulegen.
Tabelle 7.1‑1: Übersicht über die einzelnen Modellebenen
Ebene |
Raumauflösung |
interne Untergliederung |
Prozessbeschreibung |
METEOR
|
EFL, KAS, TG oder GEB
|
|
Niederschlagskorrektur, Schneeschmelze, pot. Verdunstung nach Penman, Turc/Ivanov oder Haude
|
ABI
|
EFL
|
|
Speicheransätze für homogene Standorte
|
KAS, TG oder GEB
|
Hydrotopklassen
|
Speicheransätze mit Flächenverteilungsfunktionen
|
RD
|
KAS
|
|
kinematische Welle
|
TG oder GEB
|
Abflusskomponenten nach Hydrotopen
|
Speicherkaskaden
|
GW
|
TG
|
Abflusskomponenten nach Teileinzugsgebieten
|
Einzellinearspeicher
|
GEB
|
Abflusskomponenten nach Hydrotopen
|
Q
|
FGW, TG, GEB
|
|
kinematische Welle oder Speicherkaskaden
|
TG oder GEB
|
|
Systemantwortfunktionen
|
Abbildung 7.1‑1 zeigt im Sinne einer Übersichtsdarstellung mögliche Raumdiskretisierungen in den einzelnen Modellebenen.

Abbildung 7.1‑1: Mögliche Raumdiskretisierungen in den Modellebenen
Jede Modellebene
- besteht aus verschiedenen Modulen zur Beschreibung hydrologisch relevanter Teilprozesse,
- nutzt die in den Programmkomponenten bereitgestellten Schnittstellen zu den raum- und zeitbezogenen Ein- und Ausgangsdaten und
- übernimmt bzw. übergibt Werte von bzw. nach anderen Modellebenen.
Die (vorrangig) vertikalen Prozesse werden von den Modellebenen MET und ABI beschrieben, die lateralen Abflusskonzentrationsprozesse in den Ebenen RD, GW und Q behandelt.
Abbildung 7.1‑2 zeigt die Funktionalitäten der in der Standardmodulbibliothek eingebundenen Module mit ihrer Zuordnung zu den Modellebenen.
Im Allgemeinen ist eine Modellebene wie folgt aufgebaut:
- Über einen Eintrag in der Steuerdatei MODUL.STE (s. Abbildung 7.1‑3) sind Parameter vorgebbar, die die prinzipielle Abarbeitung steuern.
- Ein Initialisierungsteil allokiert die notwendigen Speicherbereiche und ermittelt die Modellparameter und Startwerte.
- Das eigentliche Modell organisiert die Simulation der Prozesse der jeweiligen Modellebene und ruft jeweils für den aktuellen Zeitschritt und das aktuelle Raumelement das in der Bibliothek abgelegte prozessbeschreibende Modul auf.
- Eine weitere Routine gibt die eingangs belegten Speicherbereiche bei Bedarf wieder frei.
Abbildung 7.1‑2: Übersicht über die einzelnen Modellebenen
.
#################################################################################
MET_MOD1
VERDUNSTUNGS_BERECHNUNG 1 /* 0 GEGEBEN; 1 PENMAN, 2 TURC_IV, 3 HAUDE */
SCHNEEMODELL 0 /* 0 Niederschlagsdargebote gegeben, */
/* 1 Taggradverfahren */
VERDUNSTUNGSKORREKTUR 1.0 /* Faktor zur Korrektur der berechneten bzw. */
/* gegebenen potentiellen Verdunstung */
NIEDERSCHLAGSKORREKTUR 1.05 /* Korrekturfaktoren zum Ausgleich von Wind- */
SCHNEEKORREKTUR 1.2 /* fehlern und Benetzungsverlusten */
GRENZTEMPERATUR 0.5 /* Grenzwert der Tagesmitteltemperatur, unter */
/* der Schneefall angenommen wird */
TESTDRUCK
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ABI_MODELL
ZEITFAKTOR_NIEDERSCHLAG 1. /* Eichgroesse, dient zur Anpassung des kf-Wertes*/
/* < 1. : Reduktion bei geringer Zeitaufloesung */
/* zum Ausgleich von Informationsverlusten*/
/* ueber die "wahren" Niederschlagsinten- */
/* sitaeten */
/* > 1. : Erhoehung zur Beruecksichtigung von */
/* Makroporen etc. */
MET_VORGESCHICHTE 0.9 /* 0. fuer trocken bis 1.0 fuer feucht */
PARAMETER_TAB_SPEICHERN? Ja
VERTEILUNGS_FUNKT_SPEICHERN? Ja
#################################################################################
RD_MODELL
ABFLUSSBILDUNG_ITERATIV 0 /* 1 Abflussbildung innerhalb oder */
/* 0 ausserhalb der internen Zeitschleife */
#################################################################################
KINWAVE
FAK_FLIESSWEGVERLAENGERUNG 1.1
################################################################################
Q_MODELL
ZEITSCHRITTWEITE 1440. /* in Minuten */
################################################################################
Q_ELS
RUECKGANGSFAKTOR 0.0002 /* Dient der Skalierung der modellintern */
/* ermittelten Rueckgangskonstanten */
################################################################################
EGMO_GW
AFMN .50
SPEICHERUNG_DER_ELS_KONSTANTEN? JA
ABFLUSSKOMPONENTEN
RG 730 AFw AFa AFs AFB AIMP
RH 20 AH
RN 10 AW ANw ANa ANs ANB
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Abbildung 7.1‑3: Beispiel für eine Steuerdatei Modul.Ste
Tabelle 7.2‑1 gibt eine Übersicht über die von ArcEGMO bereitgestellten Systemgrößen. Diese Größen – programmtechnisch sind dies Routinen, die auf Speicheradressen verweisen – haben 3 Funktionen.
- Sie ermöglichen den Modulen, zeitlich variable Größen zu verwalten (z.B. Speicherfüllungen).
- Diese Größen können gleichzeitig Ergebnisgrößen und damit Input in die Ergebnisauswertung sein.
- Außerdem werden über einen Teil dieser Funktionen die einzelnen Modellebenen miteinander verbunden bzw. die räumlich verknüpften Datenflüsse organisiert.
So liefert MET das Niederschlagsdargebot und die potentielle Verdunstung für ABI, die wiederum neben der realen Verdunstung als Ergebnisgröße den Landoberflächenabfluss und die Grundwasserneubildung als Eingang für RD und GW bereitstellt. Über den Anteil von RO, der in der Ebene RD nicht dem Gesamtabfluss Q zugeordnet wird, weil er beispielsweise nicht das Gewässersystem erreicht, existiert eine Rückkopplung zu ABI, weil dieser Anteil wieder zur Versickerung angeboten wird. Letztlich liefern RD und GW die Inputgrößen für die Modellebene Q, die den Gesamtabfluss ermittelt.
Die Modellebene METEOR dient neben der Ermittlung und Flächenübertragung meteorologischer Daten gleichzeitig zur Verwaltung der Zeitreihen und wurde deshalb bereits ausführlich im Kapitel 5.2 beschrieben.
Die ermittelten Parameter werden im aktuellen Ergebnisverzeichnis ..RESULTS<VAR1>PARA gemeinsam mit ihrem Raumbezug in der Datei <Räumliche Bezugsebene>_<Modellebene>.par (z.B. TG_ABI.PAR) gespeichert. Über den Raumbezug ist eine Georeferenzierung der ermittelten Parameter und damit eine visuelle Plausibilitätsprüfung im GIS möglich. Beim nächsten Simulationslauf wird vom Programm geprüft, ob die entsprechende Parameterdatei gefunden wird und dann eingelesen. Somit kann die aus GIS-Daten abgeleitete Erstschätzung der Modellparameter für die weiteren Modellanwendungen geändert werden.
Während des Simulationslaufes wird innerhalb der Modellorganisation jeder Ebene sichergestellt, dass insbesondere für die Abflusskonzentrationsberechnungen eine Abarbeitung der einzelnen Raumelemente von „oben nach unten“, also hierarchisch, stattfindet.
Im folgenden wird also nur noch ausführlich auf die Modellebenen ABI, RD, GW und Q eingegangen und ihre Verknüpfungsmöglichkeiten miteinander erläutert, während die prozessbeschreibenden Module im Teil II dieser Dokumentation behandelt werden.
Tabelle 7.2‑1: Wichtige Systemgrößen in ArcEGMO
Name der Funktion |
Bedeutung |
Met_KorNiederschlag |
Ergebnis MET, Input für ABI |
Met_PotVerdunstung |
Ergebnis MET, Input für ABI |
Met_KlimaWasserbilanz |
Ergebnis MET |
Met_Lufttemperatur |
Ergebnis MET |
Met_Globalstrahlung |
Ergebnis MET |
Met_RelSonnenscheindauer |
Ergebnis MET |
Met_Dampfdruck |
Ergebnis MET |
Met_Schmelzwasserabgabe |
Ergebnis MET |
Met_Windstaerke |
Ergebnis MET |
Met_SchneespeicherFest |
Ergebnis MET |
Met_SchneespeicherFluessig |
Ergebnis MET |
Met_Bodenwaerme |
Ergebnis MET |
Abi_Effektivniederschlag |
Ergebnis ABI |
Abi_Grundwasserneubildung |
Ergebnis ABI, Input GW |
Abi_HypodermischerAbfluss |
Ergebnis ABI |
Abi_Landoberflaechenabfluss |
Ergebnis ABI, Input RD |
Abi_RealeVerdunstung |
Ergebnis ABI |
Abi_BodenfeuchteAbs |
Ergebnis ABI |
Abi_BodenfeuchteDef |
Ergebnis ABI |
Abi_Interzeptionsfuellung |
Systemgröße ABI |
Abi_KapillarwasserAustausch |
Ergebnis ABI |
Abi_Muldenspeicherfuellung |
Systemgröße ABI, Input für RD |
Abi_Bodenspeicherfuellung |
Systemgröße ABI |
Rd_Abfluss |
Ergebnis RD, Input Q |
Rd_Inhalt |
Ergebnis RD, Input für ABI |
Rd_Oberliegerzufluss |
Ergebnis RD |
Els_Input |
Systemgröße GW |
Gw_Output |
Systemgröße GW, Input für Q |
Q_Abfluss |
Ergebnis Q |
Q_Direktzufluss |
Ergebnis Q, Input für RD |
Q_Eigengebietszufluss |
Ergebnis Q |
Q_Externzufluss |
Ergebnis Q |
Q_Grundwasserzufluss |
Ergebnis Q, Input für GW |
Q_Inhalt |
Ergebnis Q |
Q_Input |
Ergebnis Q |
Q_Oberliegerzufluss |
Ergebnis Q |
Q_VorlandInhalt |
Ergebnis Q |
Q_Wasserstand |
Ergebnis Q |
Das Grundwassermodell
- ordnet extern berechnete Grundwasserzuflüsse den Gewässerabschnitten zu
- oder berechnet intern Grundwasserabflüsse für Teileinzugsgebiete oder das Gesamtgebiet bzw. Grundwasserzuflüsse für Gewässerabschnitte und stellt diese der nachgeordneten Modellebene Q zur Verfügung.
In welcher Form das Grundwassermodell arbeitet, wird in der Steuerdatei ARC_EGMO.STE (s. Kapitel 3) unter RAUMBEZUEGE_MODELLIERUNG, Option ABFLUSSKONZENTRATION_GW, sowie über die Steuerdatei MODUL.STE festgelegt.
Sollen Grundwasserzuflüsse, die extern z.B. mit einem detaillierten Grundwassermodell berechnet wurden, innerhalb eines komplexen Flussgebietsmodells genutzt werden, übernimmt die Programmkomponente FE (s. Kapitel 5.4) für diese Grundwasserzuflüsse
- die räumliche Zuordnung zu Gewässerabschnitten und
- die zeitgerechte Bereitstellung innerhalb des Simulationszyklus.
Das Grundwassermodell GW_MOD leitet diese Grundwasserzuflüsse dann lediglich an die nachfolgende Modellebene Q weiter.
Bei Verwendung „externer“ Grundwasserzuflüsse ist in der Steuerdatei ARC_EGMO.STE für ABFLUSSKONZENTRATION_GW die Option FE, für den GESAMTABFLUSS die Option FGW zu wählen.
Das interne Grundwassermodell wird aktiviert, wenn der Raumbezug in der Modellebene GW auf Teileinzugsgebiete TG, Regionen REG oder das Gesamtgebiet GEB gesetzt wurde. Es beruht auf Einzellinearspeicheransätzen, die entsprechend den vorhandenen Parametrisierungsmöglichkeiten unterschiedlich detailliert angewendet werden können. Da derzeit nur unzureichende Möglichkeiten existieren, die Einzellinearspeicherkonstanten C aus GIS-Informationen abzuleiten, müssen diese als einzulesender Parameter vorgegeben werden.
Auf Grund dieser Schwierigkeiten bei der Parameterschätzung ist es nicht sinnvoll, die quasi beliebig feine Diskretisierung bei der Abflussbildungsmodellierung für das Grundwasser beizubehalten.
Eine Zusammenfassung zu Abflusskomponenten ist angebracht, weil
- z.B. durch die ortsunabhängige Hydrotopklassengliederung eine räumliche Zuordnung der Abflüsse ohnehin nicht möglich ist,
- die Beschreibung der Abflusskonzentration deshalb generalisiert mit vereinfachten Ansätzen erfolgt und deren Modellparameter in der Regel aus beobachteten Ganglinien abgeleitet werden, was eine beliebige Differenzierung nicht zulässt und
- eine zu große Anzahl von Abflusskomponenten auch interpretatorisch schwer handhabbar ist.
Die folgende Tabelle beinhaltet die Module der Standardbibliothek und eine Kurzcharakteristik ihrer Funktion. Ausführlich werden diese Module im Teil Module dieser Dokumentation beschrieben.
Tabelle 8.6‑1: Module der einzelnen Modellebenen
Ebene bzw. Verzeichnis |
Modul |
Raumauflösung |
Prozessbeschreibung |
ABI |
SiWaE |
EFL |
Speicheransätze für homogene Standorte |
EGMO |
KAS, TG, REG oder GEB |
Speicheransätze mit Flächenverteilungsfunktionen für Hydrotopklassen |
RD |
KinWave |
kinematische Welle |
RD_SIMP |
gebildeter Abfluss = abgeflossener Abfluss |
GW |
EGMO_GW |
Einzellinearspeicher nach Abflusskomponenten |
Q |
Q_ELS |
Speicherkaskaden |
FGW, TG, REG oder GEB |