Artikel mit Schlagwort GIS

01.1 Geographische Informationssysteme und hydrologische Modellierung

Die Entwicklungen in der Computertechnik, im Hard- und Softwarebereich ermöglichen die Anwendung neuer Kon­zepte in der wasserwirt­schaftlichen Praxis, in der Hydro­lo­gie und nicht zuletz­t auch in der hydro­lo­gischen Forschung und Modellierung. Zu diesen Entwicklungen zählen:

  • leistungsfähige, arbeitsplatznahe Rechentechnik, insbesondere Gra­fik-Worksta­tions und Hochleistungs-PC´s,
  • effiziente Software zur Datenverwaltung, -analyse und zur Visua­li­sie­rung,
  • neue Technologien zur Informationsgewinnung wie Fernerkundung und digitale Bild­ver­arbei­tung.

Die neuen Informationsgewinnungstechnologien können hochaufgelöste Flä­chen­infor­ma­tio­nen (z.B. der Land­nut­zung, Schnee­be­deckung) liefern, die für das Umweltmoni­toring ge­eig­net, ohne entspre­chende Hard- und Software für diese Zwecke aber nicht hand­hab­bar sind.

Der Zustand der Umwelt und erkennbare Entwicklungstrends im Um­welt­be­reich ma­chen die Anwendung dieser neuen Kon­zepte zwin­gend erfor­der­lich, insbesondere zur Untersuchung des hydrologischen Regimes und der Verfügbarkeit der Wasserressourcen nach Menge und Qualität sowie ihrer Veränderungen infolge von Klima-, Landnutzungs- und Wasserbewirtschaftungsänderungen. Aufbauend darauf geht es dann um die Entwicklung von Konzeptionen

  • zum nachhaltigen Schutz der Ressource Wasser einschließlich ihrer Sanierung,
  • zum Schutz vor schädigenden Wirkungen des Wassers auf Mensch und Umwelt, insbesonde­re in Extremsitua­tionen,
  • zur Vermeidung und Verminderung möglicher Schädigungen.

Eines dieser neuen Konzepte schließt die umfassende Nutzung Geographischer Infor­ma­tions­syste­me (GIS) mit ein. GIS wer­den in der was­ser­wirt­schaft­li­chen Pra­xis schon viel­fach und im wachsenden Maße einge­setzt, weil was­ser­wirt­schaftli­che Problem­stellun­gen raum­bezogen sind bzw. sich auf Punkte, Li­nien und Flächen und damit auf die Geome­trieelemen­te eines GIS be­zie­hen. So sind für Fluss­ein­zugs­gebie­te Wasser-­ und Stoffbilanzen auf­zu­stel­len oder Be­wirt­schaf­tungs­richt­linien zu ent­wickeln, für Fluss­läufe Längs­schnitt­bilanzen zu erarbeiten, Über­flutungs­flächen auszuwei­sen oder Wellen­abfla­chungen zu berech­nen und für Pegel, also punktbezogen, Daten zu erheben, zu verwalten und zu analysie­ren.

GIS werden eingesetzt als Informationssysteme und zur Recherche, z.B. über die räum­liche Ver­tei­lung von Messeinrichtungen, Wassernutzern, Einleitern etc. Sie stellen meist eine wertvolle bzw. notwendige Un­terstützung wasserwirtschaftlicher Datenbanken dar, wobei u.a. die Visualisie­rungs­möglichkeiten eines GIS sinnvoll genutzt werden können.

Eine Reihe von Funktionalitäten eines GIS gestatten umfangreiche Datenanalyse­n. So können vorhan­dene Daten ausgewertet werden, z.B. im Hinblick auf die Häufigkeit des Auftretens bestimmter Zustände, Extremereignisse o.ä. in den betrachteten Räumen. Auch lässt sich leicht die Anzahl bestimmter Nutzer in Flussge­bie­ten ermitteln, wobei Daten­bank­funk­tionalitäten durch neue GIS-Funk­tio­na­li­täten ergänzt werden.

Es kön­nen aber auch neue Informa­tionen gewon­nen werden, z.B. durch Ver­schnei­dung und Verknüpfung ver­schiedener Karten mitein­ander, die bei getrennter Analyse der Aus­gangs­karten nur bedingt ab­leitbar wären.

Die genannten Einsatzmöglichkeiten eines GIS sind natürlich besonders effizient in der hydrologischen Modellierung nutzbar. Aus­führlicher erläutert wer­den soll im Folgenden die Mo­del­lie­rung des Wasserhaushalts und des Nie­der­schlag – Abfluss – Pro­zesses in Flusseinzugsgebieten, für die ein GIS eingesetzt werden kann

  • als Informationssystem über Eigenschaften des Untersuchungsgebietes, verfügbare Daten­basen u.ä.,
  • im Rahmen des Preprocessing für die Flächendiskretisierung und für die Mo­dellpara­meterer­mittlung,
  • im Rahmen des Postprocessing für die Visualisierung der Modellierungser­geb­nisse.

Der GIS-Einsatz bietet sich hier besonders an, weil verschiedene raumbezogene Daten analysiert und miteinander ver­knüpft werden müs­sen. So liegen die Messrei­hen der Eingangsgrößen (z.B. Nie­derschlag und potentielle Verdunstung) i.d.R. als punkt­bezogene Werte vor. Diese müssen auf die zu modellieren­den Flächen (Untersuchungsgebiet, Teilein­zugs­gebie­te oder kleiner) übertragen werden. Die im Gebiet stattfindenden hydrologischen Prozesse (z.B. die Verdunstung und Abflussbildung) sind flächenbezogen. Der auf Einzelstandorten und Elementarflächen im Einzugsgebiet entstehende Abfluss konzentriert sich zunächst linienförmig in Gräben und im Gewässersystem und wird letztlich für Pegel berechnet, wo er punktbezogen mit Messwerten verglichen werden kann.

Für die Modellierung kann ein Einzugsgebiet als offenes System aufge­fasst wer­den, dessen Sy­stem­verhalten durch raum- und zeit­va­riable Sy­stemeingänge und -­eigen­schaf­ten be­stimmt wird und dessen Systemausgänge dadurch auch raum- und zeit­variabel sind.

Folgende, raumbezogene Basis­informatio­nen sind relevant:

  • Digitale Höhenmodelle (Höhenlinien und -punkte usw.),
  • Landnutzung, darunter Vegetationseinheiten, bebaute, z.T. versiegelte Flächen wie Straßen, Wege, Ortschaften u.ä.,
  • Bodenformen/ -arten und -strukturen,
  • geologische Einheiten, hydrogeologische Verhältnisse,
  • Gewässernetze,
  • Lage von hydrologischen und meteorologischen Messeinrichtungen (Pegel, Niederschlagsstationen usw.).

Diese Rauminformationen können effektiv in einem GIS bereitgestellt, analy­siert ­und erweitert wer­den. So lassen sich mit Hilfe eines digitalen Höhenmodells (DHM) aus den Höheninfor­matio­nen weitere, hydrologisch relevante Flächeneigen­schaften wie Gefälle und Exposition ableiten. Diese Basisdaten werden sachbe­zo­gen verwaltet und bilden die Infor­ma­tions­ebe­nen des GIS.

Durch die eingangs erwähnten neuen Gewinnungstechnologien können Informationen in ho­her räum­licher und zeitlicher Auflösung bereitgestellt werden. GIS in Ver­bindung mit lei­stungs­fähiger Hard­ware bieten die Möglichkeit, die räumlich hoch aufgelösten Informationen umfassend zu nutzen.


01.2 Anforderungen an hydrologische Modelle

Die Anwendung von GIS ist in der hydrologischen Einzugsgebietsmodellierung dann besonders nützlich und sinnvoll, wenn die Modelle physikalisch und biologisch begründet sind und ihre Parameter aus flächendifferenzierten Informationen über die Gebietseigenschaften, wie sie zuvor genannt wurden, abgeleitet werden können. Dies gilt vor allem für flächendifferenzierte Modelle mit verteilten Parametern. Mit solchen Modellen sind auch verbesserte Möglichkei­ten zur Beschrei­bung unbeobachteter Gebiete und zur Bewertung der Aus­wir­kun­gen möglicher Kli­ma- und Land­nut­zungs­ände­run­gen auf die hy­dro­lo­gi­schen Pro­zesse gegeben.

Die Simulationsgüte der Modelle hängt ent­scheidend von der Verfügbarkeit von Informationen über die zeitliche und räumli­che Variabilität der Systemein­gän­ge, -eigenschaften und -zustände ab. Allerdings ist eine vollständige physikalisch determinierte Beschreibung aller Teilprozesse, speziell in größeren Systemen bzw. Gebieten, meist weder sinnvoll noch möglich. Refsgard (1981) schreibt zu diesem Problem: „Ein Einzugsgebiet ist ein extrem kompliziertes Natursystem, von dem wir nicht annehmen können, es exakt in allen Details beschreiben zu können.“

Deshalb umfassen die physikalisch determinierten Modellansätze je nach ihrer Detailliertheit ein Spektrum, das von den sogenannten Prozessmodellen bis zu den konzeptionellen Modellen reicht (bei fließenden Übergängen).

Detaillierte Prozessmodelle besitzen physikalisch begründete, meist direkt messbare Parameter. Ihre Anwendung scheitert oft an der unzureichenden Verfügbarkeit der Parameter in ihrer räumlichen (und z.T. zeitlichen) Verteilung. Von gleicher, oft entscheidenderer Bedeutung ist die Notwendigkeit der flächendifferenzierten Erfassung bzw. Prognose der prozessdominierenden Eingangsgrößen Niederschlag/Schnee­schmel­ze. Schilling & Harms (1983) zeigten z.B., dass eine flächendifferenzierte Modellierung primär in Abhängigkeit von der Flächendifferenzierung der meteorologischen Eingangsgrößen erfolgen sollte. Sie stellten fest, dass sehr detaillierte, räumlich hoch aufgelöste Modellansätze ohne Berücksichtigung der örtlichen Niederschlagsverteilung größere Fehler lieferten als einfachste Blockmodelle mit Berücksichtigung der Niederschlagsverteilung. Diese Tatsache muss bei der Modellwahl unbedingt beachtet werden.

Konzeptionelle Modelle sind durch notwendige und sinnvolle Vereinfachungen und Modellreduktionen aus detaillierten Prozessmodellen hervorgegangen oder beschreiben die hydrologischen Prozesse mit Hilfe von Analogien (z.B. Einzellinearspeicher). Speziell bei der Anwendung auf größere, wasserwirtschaftlich relevante Flächeneinheiten (Einzugsgebiete, Flussgebiete usw.) haben sie ihre Zweckmäßigkeit unter Beweis gestellt. Es hat sich u.a. gezeigt, „dass die auf den Grundgesetzen der Kontinuumsmechanik basierenden Modelle zu komplex sind, um der räumlich differenzierten Natur der hydrologischen Systeme gerecht zu werden“(Dooge 1985). Ein Nachteil einiger früher angewendeter konzeptioneller Modelle ist es, dass ihre Modellparameter teilweise keinen direkt messbaren physikalischen Bezug besitzen. Inzwischen gibt es jedoch ein Spektrum leistungsfähigerer Modelle, die diesen Mangel nicht aufweisen.

Bei der Modellbildung ist dem Maßstabsproblem besondere Beachtung zu schen­ken. So sind beispielsweise bei mittelmaßstäbigen mesoskaligen Einzugsgebietsmodellie­rungen prinzi­piell beide zuvor erläuterten Modellierungsalternativen anwendbar:

  1. Sehr detaillierte, prozessnahe hy­drologische Modelle, mit einer sehr feinen örtlichen und zeitlichen Diskretisierung (prozess­adä­quate Zeitschrittweiten im Minuten- bis Stunden­bereich und kleine, ho­mogene Teil­flä­chen, z.B. landwirtschaft­liche Schlä­ge), die für größere Gebiete un­ter Berück­sich­ti­gung der Wechsel­wir­kun­gen zwischen diesen Teilflächen lagegerecht miteinander ver­kop­pelt werden müssen,
  2. Konzeptionelle Modelle, die eine gröbere zeitliche und räumliche Diskretisierung ge­stat­ten bzw. oft­mals sogar erfordern.

Bei der zweiten Variante wird das Niveau der lagegerechten Berücksich­ti­gung von Teilflächen wesentlich gröber angesetzt, z.B. in der Ebene von Niederschlagszonen oder Teil­ein­zugs­ge­bie­ten, während unter­halb dieser Ebene Heterogenitäten orts­un­ab­hängig über ihre Flä­chenanteile oder statistische Ver­tei­lungs­funk­tionen in die Mo­dellierung eingehen.

Für eine Vielzahl von Aufgabenstellungen werden konzeptionelle Modelle gewählt, weil einerseits die Verfüg­barkeit der Daten in ih­rer räum­lichen und zeitlichen Ver­teilung nicht dem zur detaillierten Beschreibung der hydrolo­gischen Einzelprozesse bestehenden Be­darf ent­spricht, andererseits die meso- und makro­maßstäblich ablaufenden Pro­zesse mit ihnen effektiver erfasst und be­schrieben wer­den können. Insbesondere für mittelmaßstäbige bis großräumige Langfristsimula­tionen ist diese Verfahrensweise angeraten, weil weni­ger Zeitschritte und weniger Teil­flä­chen mit einfacheren Modellen zu bearbeiten sind. Das Haupt­pro­blem besteht bei diesem Modellierungsverfahren in der Ermitt­lung von Modell­pa­rame­tern, die für größere Flächeneinhei­ten integral aus den punk­tuell oder teilflächenbezogen vorgegebenen Systemeigen­schaften bestimmt werden müssen. Außerdem muss für größere Be­rechnungszeit­schrittweiten zumindest im statistischen Mittel der zeitinter­vallinterne Verlauf der Änderung der Systemeingangs­größen (Nie­derschlag, Verdunstung) und der Sy­stemzustände (Ve­ge­tations­ent­wicklung) berücksichtigt werden können. Es hat sich gezeigt, dass konzeptionelle Modelle bei vielen Aufgabenstellungen gut geeignet sind, mit einem vergleichsweise geringen Aufwand die in größeren Gebieten bzw. ganzen Flusssystemen ablaufenden Prozesse zu beschreiben und auch längere Zeitreihen, z.B. im Rahmen von Szenarioanalysen u.ä. zu simulieren, die dann statistisch analysiert werden können.


03.6 Pfade

Über das Steuerwort PROJEKT in der ARC_EGMO.STE wird der Projektpfad mit dem entsprechendem Laufwerksbuchstaben festgelegt.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PROJEKT     D:\NA-Modell_ArcEGMO
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung 3.6‑1: Auszug aus der ARC_EGMO.STE

 

Neben dem Projektverzeichnis können über die Schlüsselwörter GIS_VERZEICHNIS, RESULT_VERZEICHNIS und ZeitDat_VERZEICHNIS auch separate Verzeichnisse für die raumbezogenen Eingangsdaten (GIS), die Ergebnisse (Results) und zeitbezogenen Eingangsdaten (Zeit.Dat) angegeben werden und diese somit getrennt von den weiteren Projektdaten gehalten werden.

 

Dazu muss in der ARC_EGMO.STE die Steuerdatei Pfade anstelle des Projektpfades angegeben werden. Dies erfolgt über den Eintrag des Wortes Datei (siehe Abbildung 3.6‑2).

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PROJEKT        Datei
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung 3.6‑2: Verweis auf die PFADE.STE in der ARC_EGMO.ste

 

In der PFADE.STE, die im ARC_EGMO Verzeichnis stehen muss, können dann andere Pfade als die Standardpfade angegeben werden.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

PROJEKT                    D:\NA-Modell_ArcEGMO\
GIS_VERZEICHNIS            D:\NA-Modell_ArcEGMO\GIS\
RESULT_VERZEICHNIS         D:\NA-Modell_ArcEGMO\
ZeitDat_VERZEICHNIS        E:\Projekte\NA-Modell_ArcEGMO\Zeit.dat\
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung 3.6‑3: PFADE.STE

 

Als weitere Möglichkeit kann die Angabe von Unterverzeichnissen oder Verweise auf andere Speicherorte bei den Zeit-Daten in den DESCRIBE-Dateien für die Zeit-Daten vorgenommen werden. Der Pfad des Unterverzeichnisses muss mit \ beginnen und enden. Es wird dann der angegebene Pfad aus der ARC_EGMO.STE mit dem Pfad des Unterverzeichnisses verkettet. Soll ein Verweis auf einen Ordner außerhalb der ArcEGMO-Struktur erfolgen muss der gesamte Pfad angegeben werden. Der folgende Auszug aus der MET_DATA.SDF zeigt die drei verschieden Möglichkeiten (Standard, Unterverzeichnis und Verweis) der Pfadangabe bei den Zeit-Daten.

######Meteorologie ##################################################

MET_DATEN      ASCII
*MET_DATEN     ASCII \Stundenwerte\
*MET_DATEN     ASCII E:\Daten\met_data\Stundenwerte\
…
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung 3.6‑4: Auszug aus der MET_DATA.SDF

 

Bei den DESCRIBE-Dateien für die GIS-Daten kann ebenfalls auf diese Weise ein Unterverzeichnis, aber kein Verweis angegeben werden.


04.1 Die GIS-Datenbasis und ihre prinzipielle Struktur

Die GIS-Datenbasis und ihre prinzipielle Struktur

Die Organisation der Datenflüsse zwischen den einzelnen Modellkomponenten, die Modellparameterermittlung aus raumbezogenen Informationen wie auch die Verwaltung der raumbezogenen Modellergebnisse erfolgen GIS-gestützt.

Grundlage für die Anwendung der beschriebenen Modellierungskonzeption ist die GIS-gestützte Aufbereitung der raumbezogenen Eingangsinformationen. In deren Ergebnis entsteht eine definierte Datenstruktur, die alle raum­bezogenen Informationen für die hydrologische Modellierung enthält.

Zur Beschreibung der Mengenflüsse zwischen diesen Modellierungsebenen werden die räumlichen Zuordnungen der einzelnen Modellierungseinheiten zueinander ermittelt. Eine Übersicht über den gegenwärtigen Stand der je nach Anwendung zu erstellenden GIS-Datenbasis gibt Tabelle 4.1‑1.

 

Tabelle 4.1‑1: Informationsebenen der GIS-Datenbasis

Bezeichnung Geometrie Inhalt Bemerkungen
METSTAT Punkt Lagekoordinaten der meteorol. Stationen obligatorisch für Übertragung der Werte auf die Modellierungsflächen
METGEB Fläche meteorol. Teilgebiete fakultativ (noch nicht integriert)
EFL Fläche Elementarflächen obligatorisch
TG Fläche Teilgebiete obligatorisch nur für NA-Modellierung
KASEG Fläche Kaskadensegmente fakultativ
FGW Linien Gewässerabschnitte fakultativ
GWP Punkte besondere Gewässerknoten (Sonderbauwerke) Fakultativ (s. Kapitel Bauwerke)
HYD_STAT Punkte Lage von Pegeln, Einleitungen und Entnahmen fakultativ

 

Die GIS-Datenbasis besteht aus Geometrien, die in Coverages verwaltet werden. Flächengeometrien sind vorzugsweise Polygone, es können aber auch Raster bzw. Grids sein. Den Geometrien sind Attribute über Zeiger bzw. Verweise zugeordnet. Diese Attribute werden in Attribut-Tabellen (PAT für Punkt- und Polygon-Attribute, AAT für Arc-Attribute) oder Relate-Tabellen verwaltet.

Tabelle 4.1‑2 gibt einen Überblick über die Modellierungscoverages, ihre Verweise aufeinander und auf Relate-Tabellen. Diese Coverages werden durch verschiedene GIS-Operationen, in erster Linie Ver­schneidungen erzeugt. Für alle Punktcoverages und die Elementarflächen werden die X/Y-Koordinaten der Geometrien auf Basis eines planimetrischen Koordinaten­systems (z.B. Gauß-Krüger, UTM) benötigt. Diese werden für die Polygon­geometrien als Koordinaten des Flächen­schwerpunktes den Attribut-Tabellen angefügt.

 

Tabelle 4.1‑2: Übersicht über die GIS-Datenbasis und ihre Verknüpfungen

Coverage Inhalt Verweis auf
Coverage Relate-Tab. Inhalt
TG Teileinzugsgebiete
FGW Fließgewässerabschnitte TG
PROFIL Gewässerprofile[1]
FGW_TYP Gewässertyp und Ausbaugrad
Gewässerknoten x,y,z-Koordinaten
KASEG Kaskadensegmente TG
FGW
EFL Elementarflächen TG
KASEG
BODEN Bodeninformationen
LNTZ Landnutzungsdaten
FLURAB Grundwasserflurabstände
GEF Geländegefälle

 

Zeiger auf Relate-Tabellen, die nicht im Zuge der Verschneidung von den Ausgangskarten übernommen werden können, müssen manuell angefügt werden.

Die Relate-Tabellen beinhalten, nach inhaltlichen Gesichtspunkten geordnet, Eigenschaf­ten bzw. Attribute der Geometrien der Coverage, auf die über Verweise oder Schlüssel zugegriffen werden kann. Rein formal hätten die in den Relate-Tabellen verwalteten Eigenschaften auch direkt in den Attribut-Tabellen des Coverage gespeichert werden können. Da aber zwischen vielen Attributen und den Coverages „one to many“-Beziehungen existieren, sind Relate-Tabellen zur Vermeidung von Redundanz eine effektivere Form der Verwaltung. Welches Attribut in welchem hydrologischen Modul verwendet wird, ist in den einzelnen Moduldokumentationen (siehe Teil II der Dokumentation) verzeichnet.

Die Vorgehensweise zur Erzeugung und die Form der Datenschnittstelle ist in Abbildung 4.1‑1 schema­tisch dargestellt.

 

image

Abbildung 4.1‑1: GIS-gestützte Datenaufbereitung und hydrologisches Programmsystem

 

Die Datenbasis kann je nach vorliegenden Datengrundlagen in verschiedenen Formaten eingelesen werden. Möglich sind ASCII-, DBASE- oder INFO- Dateien. Es muss lediglich beachtet werden, dass das Format in der entsprechenden Strukturdefinitionsdatei (Bsp. TG.sdf) angegeben und der entsprechende Speicherort verwendet wird (siehe Abbildung 4.1‑2 und Tabelle 4.1‑3).

 

TG.SDF

###### Attribut-Tabelle ###############
*TG_PAT              INFO tg.pat
TG_PAT               DBASE tg.dbf
*TG_PAT              ASCII tg.tab
TG_FLAECHE           AREA
TG_IDENTIFIKATION    TG_ID
TG_UNTERLIEGER       Ulieger
*TG_NAME             NAME

Abbildung 4.1‑2: Strukturdefinitionsdatei TG.sdf

 

Tabelle 4.1‑3: Übersicht über die Strukturdefinitionsformate

Format Programm Speicherort Datenbasis
DBASE ArcVIEW / ArcGIS D:\Projekt\GIS EFL.dbf
ASCII Alle D:\Projekt\GIS\ascii.rel EFL.tab / EFL.Txt
INFO ARC/INFO D:\Projekt\GIS\ascii.rel EFL.pat

 

Im Folgenden wird allgemein von Datenbasis (.DB) gesprochen, gemeint ist damit die Datenbasis unabhängig vom Datenformat. Für die Beispieldateien wird das derzeit gängigste Format (.dbf) verwendet, es könnte hier aber auch jedes andere der oben beschriebenen Formate eingesetzt werden.

Die beiden Modellierungs-Cover TG und EFL stellen das notwendige Minimum geometriebezogener Informationen für die Niederschlag-Abfluss-Modellierung dar. Für eine reine Wasserhaushaltsmodellierung wird lediglich das Elementarflächen-Cover benötigt. Allen Modellierungs-Covern sind, wie in Tabelle 4.1‑2 und Abbildung 4.1‑3 darge­stellt, Attributtabellen zugeordnet, welche die eigentlichen, für die Modellierung relevanten Informa­tio­nen beinhalten.

 

image

Abbildung 4.1‑3: Geometriebezüge der Attributdaten in der GIS-Schnittstelle

 

Welche Informationen in den Attribut- und Relate-Tabellen benötigt werden, ist abhängig vom Informationsbedarf der aktivierten Module der Modellbibliothek. In den folgenden Beschreibungen dieser Tabellen werden die obligatorischen Attribute, die das Informationsminimum darstellen, gesondert gekennzeichnet.

Das hydrologische Modell nutzt nur die Informationen dieser Attributtabellen und kann deshalb geometriefrei und somit sehr effektiv abgearbeitet werden. Werden die Modellergebnisse wiederum in Attributtabellen oder Relate-Tabellen gespeichert, stehen sie nach der Modellrechnung sofort im GIS für die Visualisierung und analytische Auswertung zur Verfügung. Abbildung 4.1‑4 skiz­ziert das Da­ten­mo­dell.

 

image

Abbildung 4.1‑4: Ausschnitt aus dem Datenmodell der GIS-Schnittstelle

 

Für die Verarbeitung der Informationen in den Attribut- und Relate-Tabellen der GIS-Datenbasis wurde eine Schnittstelle geschaffen, in der eine Programmkomponente für jedes Coverage zur Verfügung steht. Einen Überblick über die Struktur der GIS-Schnittstelle gibt Abbildung 4.1‑5. Diesen Komponenten ist gemeinsam, dass sie den Zugriff auf Tabellen im INFO- oder ASCII-Format gestatten.

 

image

Abbildung 4.1‑5: Struktur und Komponenten der GIS-Schnittstelle

 

Die Tabellen können variabel strukturiert sein bzgl. Spaltenanzahl, Spalten- bzw. Attributbezeichner, Zahlenformaten und Zeilenanzahl.

Die jeweils aktuelle Tabellenstruktur wird den Modulen über beschreibende Steuerdateien mitgeteilt, da sie sich immer auf konkrete Datenstrukturen beziehen. Es ist erforderlich, dass alle GIS-Daten eines Projektes gemeinsam mit den Steuerdateien im GIS-Verzeichnis des aktuellen Projektes gespeichert sind, wobei sich die Steuerdateien im Verzeichnis DESCRIBE befinden.

Alle Anweisungsblöcke innerhalb dieser Steuerdateien beziehen sich jeweils auf genau eine Attribut- bzw. Relate-Tabelle. Jeder Block beginnt mit einem Schlüsselwort als Kennung der Tabelle, gefolgt vom Tabellenformat (ASCII oder INFO) und der Dateibezeichnung. Die folgenden Zeilen beinhalten i.d.R. Angaben zu den Attributen innerhalb der Tabelle bzw. den Spaltenbezeichnern. Nach einem Schlüsselwort zur verbalen Kennzeichnung der Art des Attributes erfolgt die in der konkreten Tabelle verwendete Attributbezeichnung. Datentyp und Speicherformat sind ohne Belang, da programmintern eine sehr variable Zuweisung der Tabellendaten auf Programmvariablen erfolgt.

Durch Anpassung der Steuerdateien auf die konkreten Tabellen kann mit unterschiedlichsten Tabellenstrukturen gearbeitet werden. Es kann aber auch schon während der Erstellung der GIS-Datenbasis gewährleistet werden, dass die Tabellenstrukturen den im Weiteren angegebenen Beispielen entsprechen, so dass die Steuerdateien ohne Änderungen genutzt werden können.

Das Modellierungsgebiet kann räumlich unterschiedlich stark unterteilt werden. Dabei gliedert sich das Gesamtgebiet (GEB) in Teileinzugsgebiete (TG) die wiederum in Kaskaden aufgeteilt werden können (KAS). Teileinzugsgebiet und Kaskaden sind aus Hydrotopen zusammengesetzt, die ihrerseits aus Elementarflächen mit ähnlichen Eigenschaften gebildet werden. Sowohl für die Berechnungen als auch für die Ergebnisausgabe können unterschiedliche Raumbezüge gewählt werden, die in der Hauptsteuerdatei ArcEGMO.ste festgelegt werden (siehe Abbildung 4.1-6). Durch die Wahlmöglichkeit des Raumbezuges und damit der benötigten räumlichen Differenziertheit der Ergebnisse einerseits und der Zusammenfassung ähnlicher Gebiete zur Verringerungen des numerischen Aufwands andererseits, eignet sich das Modell für die multiskalige Anwendung.

 

Auszug aus der ArcEGMO.ste

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
RAUMBEZUEGE_MODELLIERUNG
METEOR                          HYD /*GEB, TG, KAS, REG, HYD, EFL */
ABFLUSSBILDUNG                  TG /*GEB, TG, KAS, REG, HYD, EFL */
ABFLUSSKONZENTRATION_RD         TG /*GEB, TG, KAS, REG */
ABFLUSSKONZENTRATION_GW         TG /*GEB, TG, KAS, REG, EFL */
GESAMTABFLUSS                  FGW /*GEB, TG, FGW, REG */
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
RAUMBEZUEGE_ERGEBNISSE
METEOR                        HYD /*GEB, TG, KAS, REG, HYD, EFL*/
ABFLUSSBILDUNG                HYD /*GEB, TG, KAS, REG, HYD, EFL*/
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung 4.1‑6: Wahl der Raumbezüge für die Modellierung und Ergebnisausgabe

 

Beispiele für die Raumgliederung sind in der folgenden Abbildung dargestellt. Je höher die räumliche Diskretisierung ist, desto länger sind aber auch die Rechenzeiten, weil für jede der Raumeinheiten der Wasserhaushalt mindestens in Tagesschrittweite berechnet wird.

In den folgenden Kapiteln werden die verschiedenen Raumgliederungen ausführlich beschrieben.

 

image

Abbildung 4.1‑7: Raumgliederung (GEBIET=1 Fläche, TEILGEBIET=18 Flächen, HYDROTOPE=352 Flächen, ELEMENTARFLÄCHEN=6661 Flächen)


[1] nur für hydraulische Modellierung – derzeit nicht integriert.


B.1 Integration ins GIS-Datenmodell

Bei der Modellierung eines Flussgebietes ist es meist unumgänglich, Speicher, Talsperren, Hochwasserrückhaltebecken, Wehre, Seen etc., also Sonderbauwerke zu berücksichtigen. Die Gemeinsamkeit obiger Bauwerke und Anlagen ist es, dass sie Punkte innerhalb des Gewässernetzes beschreiben. Diese Bauwerke und Anlagen verändern die Dynamik des Abflussregimes, haben aber im Gegensatz zu Entnahmen und Einleitungen (s. Kapitel 5.4) keinen Bilanz verändernden Einfluss. Eine Ausnahme sind größere Seen, die jedoch noch besprochen werden.

Die prinzipielle Verfahrensweise zur Verwaltung solcher Sonderbauwerke ist wie folgt:

  1. Es wird ein neues PseudoCover mit Gewässerpunkten GWP eingeführt, wobei jeder GWP einem Raumelement (FGW, TG oder REG) der räumlichen Diskretisierung für die Abflusssimulation eindeutig zuordenbar sein muss.
  2. Für jeden GWP kann eine Routine bzw. ein Modul zur Beschreibung der Abflusstransformation festgelegt werden, z.B. zur Beschreibung eines Überfallwehres etc. Bezüglich dieser Module kann auf eine Bibliothek mit vorgefertigten Modulen zurückgegriffen werden oder es können nach dem Muster der Bibliotheksmodule eigene geschrieben werden.
  3. Die Berücksichtigung der GWP-Module innerhalb der Abflusssimulation erfolgt so, dass bei Abarbeitung des Fließgewässermodells geprüft wird, ob der untere Knoten des aktuell modellierten Gewässerabschnitts ein GWP ist. Ist dies nicht der Fall, wird wie in Abbildung B.1‑1 a) angedeutet, der Abfluss aus dem Abschnitt direkt dem Unterliegerzufluss Qz zugeordnet. Auf der rechten Seite dieser Abbildung ist dargestellt, dass bei einem Vorhandensein eines GWP’s sämtliche Zuflüsse in diesen über eine Transformationsfunktion Tf gesteuert an den Unterlieger weitergegeben werden.

image

Abbildung B.1‑1: Verknüpfungen innerhalb des Fließgewässermodells

 

Wie eine solche Transformationsfunktion aussieht, wird letztlich durch die Art des Sonderbauwerkes bestimmt. Denkbar ist, dass Steuerungsfunktionen zufluss- oder wasserstandsabhängig sind oder auf die Einhaltung gewissen Schwankungsbreiten des Abflusses ausgerichtet sind.

Eine Umsetzung dieser Vielzahl verschiedener Möglichkeiten in Module, die über eine Bibliothek sofort verfügbar sind, kann nur im Laufe der Zeit erfolgen.

Vorrangiges Ziel bei der Einführung von Gewässerpunkten als zusätzliche Option gegenüber den bisherigen Möglichkeiten von ArcEGMO war es deshalb, die softwaremäßigen Möglichkeiten zur Integration derartiger Module in die Abflusssimulation zu schaffen.

Wie dies zu erfolgen hat, wird im Weiteren anhand der Einbindung eines Moduls zur Beschreibung der Seeretention erläutert.

Die dabei verwendeten Algorithmen beruhen auf dem Vorhandensein einer Stauinhaltslinie zur Umsetzung der Zuflüsse in Volumenänderungen und letztlich Wasserstände. Für die Abflussermittlung wird eine Wasserstand-Abfluss-Beziehungen genutzt. Damit ist dieses Seeretentionsmodul ziemlich universell einsetzbar, da sich bei wasserstandsabhängigen Steuerungen meist statt der hydraulischen Kennwerte der Steuerungseinrichtungen wie Grundablass oder Überfall auch direkt eine Wasserstand-Abfluss-Beziehung angeben lässt.

Abbildung B.1‑2 zeigt die Steuertabelle gwp.sdf, die analog den anderen Strukturdefinitionsfiles z.B. für die Elementarflächen, den Aufbau der GWP-Tabelle und der zugeordneten RELATE-Tabellen zeigt.

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###### Attribut-Tabellen ######################################################
GWP_PAT                               ASCII gwp_node.tab
GWP_IDENTIFIKATION                    GWP-ID
NODE_IDENTIFIKATION                   NODE-ID /* Zuordnung zu Gewaesserknoten
X_WERT                                X-COORD /*ueber NODE_IDENTIFIKATION
Y_WERT                                Y-COORD /*(s. FGW) oder X,Y-Koordinaten
BEZUGSHOEHE                           HOEHE
ANFANGSWASSERSTAND                    W_START
MODUL_ZUR_ABFLUSSTRANSFORMATION       MOD_TYP
Kennwert1                             ken1
Kennwert2                             ken2
Kennwert3                             ken3
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###### Relate-Tabellen ########################################################
HAV_BEZIEHUNGEN                       ASCII hav /* hav ist DateiTyp-Bezeichnung */
RELATIVE_HOEHE                        HOEHE /* in [m] bezogen auf BEZUGSHOEHE, s.o.*/
OBERFLAECHE                           AREA /* in [m**2] */
VOLUMEN                               VOL /* in [m**3] */
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
WQ_BEZIEHUNGEN                        ASCII wq /* wq ist DateiTyp-Bezeichnung */
WASSERSTAND                           W /* in [cm], bezogen auf Bezugshoehe */
ABFLUSS_MINIMUM                       Qmin /* in [m**3/s] */
ABFLUSS_ MAXIMUM                      Qmax /* in [m**3/s] */
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung B.1‑2: Datei gwp.sdf – Strukturdefinition der Gewässerpunkttabelle

 

Abbildung B.1‑3 zeigt beispielhaft eine GWP-Tabelle. Die GWP-ID ist eine frei wählbare, aber eindeutige Nummer zur Identifizierung des GWP’s.

GWP-ID NODE-ID X-COORD Y-COORD HOEHE W_START ken1 ken2 ken3 MOD_TYP
23     33      551749  5983791 5.00  3.00    3000 0.0  1.5  1

Abbildung B.1‑3: Beispiel für eine Gewässerpunkttabelle

 

Soll für Testzwecke ein Gewässerpunkt mal deaktiviert werden, ohne dass die entsprechende Zeile komplett gelöscht wird, kann dass leicht geschehen, indem ihm der Modultyp 0 zugeordnet wird.

Die Angabe der Lagekoordinaten des GWP’s (X- und Y-COORD) dient ebenso wie die Angabe der NODE-ID des zugeordneten Gewässerknotens der Verknüpfung des GWP mit dem zugeordneten FGW (TG oder REG). Bei der Auswertung der Attribute wird folgende Rangfolge abgearbeitet. Wenn die NODE-ID belegt ist, wird diese verwendet. Wenn nicht, wie in Abbildung B.1‑4, wird versucht, über die X- und Y-Koordinaten eine Referenz zum nächstgelegenen Raumelement (Gewässerknoten, TG oder REG) der Abflussebene herzustellen.

 

GWP-ID X-COORD Y-COORD HOEHE W_START ken1 ken2 ken3 MOD_TYP
23     551749  5983791 5.00  3.00    3000 0.0  1.5  1

Abbildung B.1‑4: Beispiel für eine Gewässerpunkttabelle ohne NODE-ID

 

Die ersten beiden Möglichkeiten sollten dann Verwendung finden, wenn sich die zu beschreibenden Gewässerpunkte in guter Näherung auf wirkliche Punkte reduzieren lassen und die Abflusssimulation unter Nutzung eines Covers FGW erfolgt.

Eine dritte Möglichkeit zur Integration von Gewässerpunkten bzw. Sonderbauwerken gestattet über eine weitere Datei die Angabe einer beliebigen Anzahl von zufließenden Gewässerabschnitten bzw. Teileinzugsgebieten oder Regionen.

Diese dritte Möglichkeit wird dann aktiviert, wenn auch keine Koordinaten gegeben sind (s. Abbildung B.1‑5).

 

GWP-ID HOEHE W_START ken1 ken2 ken3 MOD_TYP
23     5.00  3.00    3000 0.0  1.5  1

Abbildung B.1‑5: Beispiel für eine Gewässerpunkttabelle ohne Koordinaten

 

Dann werden im Verzeichnis …GISRELATE für jeden Gewässerpunkt die Dateien GWP_<GWP-ID>.<Raumbezug(Q)> gesucht und sofern vorhanden zur Ermittlung der Zuflüsse zu diesem Gewässerpunkt verwendet. Innerhalb dieser Dateien (s. Abbildung B.1‑6) werden über das Steuerwort INPUT für den über die GWP-ID zugeordneten Gewässerpunkt die zufließenden Gewässerabschnitte bzw. (TGs oder REGionen) über ihre ID angegeben. Hinter dem Steuerwort INPUT ist noch die Anzahl der folgenden ID’s anzugeben.

Weiterhin ist es über diese dritte Möglichkeit auch die Beschreibung verzweigter Gewässerstrukturen und damit von komplexen Flussgebietsstrukturen im Tiefland möglich, indem über die Angabe eines ABZWEIGs eine Abflussaufteilung vorgenommen wird. Für einen Abzweig kann über eine WQ-Beziehung festgelegt werden, wieviel der zufließenden Wassermenge dem Unterlieger des Knotens (definiert über die Unterlieger-Zuordnung der zufließenden Gewässerstränge) und welcher Abfluss in einen Seitenstrang abgezweigt wird.
INPUT 3 Bitte beachten Sie, dass die Möglichkeit von Abflussverzweigungen nur unterstützt wird, wenn die Verknüpfungsmöglichkeit über die Node-ID und über die Lagekoordinaten nicht gegeben ist, in der gwp.sdf (s. Abbildung B.1‑2) NODE_IDENTIFIKATION und X_WERT, Y_WERT deaktiviert bzw. auskommentiert sind.

INPUT
25
26
27
ABZWEIG 34

Abbildung B.1‑6: Beispiel die Zuordnung GWP – FGW über eine separate Datei

 

Die weiteren Angaben in der Strukturdefinitionstabelle der Gewässerpunkte (s. Abbildung B.1‑2) enthält vorrangig Angaben, die auf das Grundmodul Seeretention zugeschnitten sind. So können z.B. die W-Q-Beziehungen, deren Wasserstandsangaben sich normaler Weise auf den Pegelnullpunkt beziehen, über die Angabe einer BEZUGSHOEHE in einen auf Meereshöhe bezogenen Höhenbereich gebracht werden. Außerdem kann als Startwert für die Retentionsberechnungen ein ANFANGSWASSERSTAND vorgegeben werden.

Weiterhin enthält die Strukturdefinitionstabelle der Gewässerpunkte (s. Abbildung B.1‑2) Angaben zu den RELATE-Tabellen im Verzeichnis …GISRELATE, derzeit die W-Q-Beziehungen und die Höhen-Oberflächen-Volumen-Beziehungen (HAV). Da bei diesen Tabellen von einer eineindeutigen Beziehung (1,1) zwischen GWP’s und Tabellen ausgegangen werden kann, wurde jede der W-Q- bzw. HAV-Beziehungen in einer getrennten Datei abgelegt, deren Dateinamen sich aus der GWP-ID (über die auch die Referenzierung erfolgt) und „.hav“ bzw. „.wq“ als Dateityp zusammensetzt. Abbildung B.1‑7 und Abbildung B.1‑8 zeigen beispielhaft Auszüge aus solchen Tabellen. Zu beachten ist hierbei, dass die Wasserstände in der WQ-Tabelle als auf den Pegelnullpunkt bezogene Höhen angegeben werden können (s. oben), vor allem aber wie in der Wasserwirtschaft üblich, in [cm] erwartet werden.

 

HOEHE AREA   VOL
1.00  43.00  12345.
2.00  131.00 14567.
...

Abbildung B.1‑7: Beispiel einer HAV-Tabelle

 

W   Qmin Qmax
70  0.83 1.16
75  1.05 1.50
...

Abbildung B.1‑8: Beispiel einer WQ-Tabelle

 

Weiterhin enthält die Gewässerpunkttabelle (s. Abbildung B.1‑3) Angaben zum Algorithmus und Kennwerte der Abflusstransformation (MOD_TYP, ken1, ken2 und ken3 – Attributbezeichnungen definiert über <MODUL_ZUR_ABFLUSS-TRANSFORMATION>, <Kennwert1>, <Kennwert2> und <Kennwert3> in der Datei GWP.SDF, s. Abbildung B.1‑2).

Wie Abbildung B.1‑8 zeigt, können in der WQ-Tabelle auch zwei Abflüsse angegeben werden, die je nach MOD_TYP entweder als möglicher Abflussbereich bei Anlagen interpretiert werden, die eine gesteuerte Abflussabgabe zulassen oder eine Abflussaufteilung bei einer Gewässerverzweigung (MOD_TYP 7 und 9) gestatten.