03. Programmtechnische Umsetzung


03.1 Räumliche und zeitliche Diskretisierung

Print Friendly, PDF & Email

Die Abflussbildung kann je nach gewünschter räumlicher Auflösung

  1. für Elementarflächen oder
  2. für Kaskadensegmente, Teileinzugsgebiete bzw. das Gesamtgebiet

berechnet werden.

Liegt die gewählte räumliche Auflösung über der der Elementarflächen, so kann i.d.R. nicht mehr von quasi homogenen Flächen ausgegangen werden. Diese inhomogenen Flächen werden modelliert, indem sie in Hydrotopklassen untergliedert und weitere Inhomogenitäten über Flächenverteilungsfunktionen berücksichtigt werden.

Da sich zwischen der elementarflächen- und der hydrotopklassenbezogenen Abflussbildungsmodellierung neben vielen Gemeinsamkeiten auch eine Reihe von Unterschieden ergeben, werden dafür zwei verschiedene Modellkomponenten eingesetzt, und zwar

  1. ein Elementarflächenmodell oder
  2. ein Hydrotopklassenmodell.

Die zeitliche Diskretisierung bestimmt wesentlich die erreichbare Genauigkeit bei der Wiedergabe der zu beschreibenden Prozesse. In welcher zeitlichen Diskretisierung gearbeitet wird, ist letztlich durch die zeitliche Auflösung der meteorologischen Eingangsdaten vorgegeben. Simulationsrechnungen in geringerer Zeitauflösung bedeuten einen Informationsverlust, höhere Zeitauflösungen sind möglich, insbesondere im Zusammenspiel mit Teilmodellen der Abflusskonzentration aus numerischen Gründen sogar teilweise notwendig, bringen aber keinen Informationsgewinn bzgl. der zu beschreibenden Abflussbildungsprozesse.

Liegen die meteorologischen Daten in geringer Zeitauflösung vor, wird zum einen die Intensitätsverteilung des Niederschlages innerhalb eines Zeitintervalls nicht wiedergegeben, was sich insbesondere auf die Simulationsgüte des Infiltrationsprozesses auswirkt. Zum anderen wird der Wechsel von niederschlagshaltigen und -freien Perioden nicht erfasst, was die Beschreibung der Abflussbildung insgesamt verschlechtert.

Die in den folgenden Kapiteln beschriebenen Ansätze zur Parameterermittlung aus GIS-Informationen gehen von einer Modellierung in einer prozessadäquaten Zeitauflösung (max. 1 Stunde) aus. Da die dafür notwendigen Eingangsdaten oft nicht zur Verfügung stehen, sind empirische oder statistisch abgesicherte Transformationen notwendig, welche die „zeitliche Ungleichförmigkeit“ z.B. des Niederschlages innerhalb eines Berechnungszeitschrittes berücksichtigen.


03.2 Ein- und Ausgangsgrößen

Print Friendly, PDF & Email

Eingangsgrößen in die Modellierung der Abflussbildung sind das Niederschlagsdargebot und die potentielle Verdunstung, die vom System ArcEGMO bereitzustellen sind. Unter Niederschlagsdargebot ist das auf die zu modellierende Fläche bezogene, korrigierte (Windfehler, Benutzungsverluste etc.) flüssige Niederschlagsangebot zu verstehen, also Regenniederschlag oder Schmelzwasserabgabe der Schneedecke.

Im Zuge der Modellrechnungen werden für den zu modellierende Raumbezug (Elementarfläche oder Hydrotopklasse) die folgenden Wasserhaushaltsgrößen ermittelt:

  1. Effektivniederschlag PEF als Infiltrationsüberschuss,
  2. (potentieller) Landoberflächenabfluss RO als Überlauf aus einem Muldenspeicher,
  3. reale Verdunstung ER und
  4. Sickerwassermenge bzw. Grundwasserneubildung GWN.

Je nach Aufgabenstellung kann das Abflussbildungsmodell innerhalb eines Niederschlag-Abfluss-Modells eingesetzt werden, wobei dann der Landoberflächenabfluss und die Grundwasserneubildung an die nachgeordneten Modellebenen zur Beschreibung der lateralen Abflussprozesse weitergegeben werden.

Für die Übergabe an nachgeordnete Modellebenen zur Beschreibung der lateralen Abflussprozesse werden der Landoberflächenabfluss und die Grundwasserneubildung räumlich aggregiert für die Bezugsgeometrien bereitgestellt.


03.3 Modellinitialisierung

Print Friendly, PDF & Email

Im Zuge der Modellinitialisierung werden die folgenden Schritte abgearbeitet, wobei die dem Cover EFL (s. Basisdokumentation, Kapitel 4.5) zugeordneten GIS-Informationen genutzt werden:

  • Dimensionierung des Modells entsprechend der Anzahl der zu modellierenden Raumeinheiten (Elementarflächen oder Hydrotopklassen) im Untersuchungsgebiet, wobei der benötigte Speicherplatz für die Modellparameter, die Ergebnisdaten und die Systemzustandsvariablen bereitgestellt wird,
  • Ermittlung der Modellparameter,
  • Festsetzung einer Anfangsbelegung der Systemzustandsvariablen entsprechend der meteorologischen Vorgeschichte (s. Basisdokumentation, Kapitel 3).

03.4 Parameterermittlung

Print Friendly, PDF & Email

3.4.1 Elementarflächenmodell

Die Ermittlung der elementarflächenbezogenen Abflussbildungsparameter (Tabelle 3‑1) erfolgt unter Einbeziehung der GIS-Informationen des Coverage EFL und der diesem Cover zugeordneten Relate-Tabellen (s. Basisdokumentation, Kapitel 4). Da die Werte in den Relate-Tabellen in Form einer Spannweite (im Sinne eines Fehlerbereichs) angegeben sind, können die Modellparameter unter Nutzung der Minimal- und der Maximalwerte ermittelt werden. Damit kann im Zuge der Modellrechnungen eine Spannweite für die Ergebnisse erhalten werden, womit unter anderem Rückschlüsse auf die Auswirkungen falsch geschätzter Parameter und Sensitivitätsanalysen möglich sind.

 

Tabelle 3‑1: Parameter des Elementarflächenmodells

Parameter Bedeutung Ableitung
Bemerkung
WOM Interzeptions-
­spei­cher­­ka­pa­zi­tät
INTC * BED
WMM Muldenspeicher­-
kapazität
f(Gefälle, Nutzung)
HSM Kapillar­wasser­-
spei­cherka­pa­zi­tät
Σ[(FK-WP) * DICKE] Summe der schicht-
bezogenen Speicher-
kapazitäten
betrachtet wird Bodenprofil bis:
• Wurzeltiefe
• Grundwasser-flurabstand
• Fels bzw. Festgestein anstehend
SMM Spei­cher­kapazi­tät
des Luftpo­ren­raumes
Σ[(GVP-FK) * DICKE]
KFH gesättig­te hydrau­li­sche Leitfähigkeit MIN(KF) * DT Minimum der KF-Werte

 

3.4.2 Hydrotopklassenmodell

Hydrotopklassen sind eine Zusammenfassung von ähnlichen Elementarflächen innerhalb einer übergeordneten Raumeinheit. Diese Bezugsgeometrien können sein:

  • das Untersuchungsgebiet (GEB) insgesamt,
  • die Teileinzugsgebiete in TG oder
  • die Kaskadensegmente in KAS.

Im Zuge der Modellinitialisierung werden die folgenden Schritte abgearbeitet, wobei die im Cover EFL abgelegten Informationen der GIS-Datenbasis und die im Elementarflächenmodell (s. Kapitel 3.1) ermittelten Parameter genutzt werden:

  • Ermittlung der Anzahl der belegten Hydrotopklassen innerhalb der auszuwertenden Bezugsgeometrien als Grundlage für die Dimensionierung des Modells (s. Kapitel 3.3)
  • Ermittlung der hydrotopklassenbezogenen Abflussbildungsparameter (s. Tabelle 3‑2: Parameter des Hydrotopklassenmodells
  • unter Einbeziehung der zuvor ermittelten Elementarflächenparameter (s. Tabelle 3‑1).

 

Tabelle 3‑2: Parameter des Hydrotopklassenmodells

Parameter Bedeutung Bemerkung
AREA Fläche jeweils bezogenauf die übergeordnete Bezugsgeometrie (GEB, TG oder KAS)
GEF mittleres Gefälle
AIMP versiegelter Flächenanteil
AW Wasserflächenanteil
AeHy Flächenanteil der Hydrotopklasse für jede belegte Hydrotopklasse innerhalb der übergeordneten Bezugsgeometrie
WMM Mittelwert der Muldenspeicherkapazität WMM(*)
WOM Mittelwert der Interzeptionsspeicherkapazitäten WOM(*)
HSC Minimum der Flächenverteilungsfunktion der HSM(*)-Werte
HMX Maximum der Flächenverteilungsfunktion der HSM(*)-Werte
GMN Minimum der Flächenverteilungsfunktion der KFH(*)-Werte
GMX Maximum der Flächenverteilungsfunktion der KFH(*)-Werte
SNM Spei­cher­kapazi­täten des Luftpo­ren­raumes auf AN, Fak * SMXN, entspricht ca. SMM-Werte(*)
(*) – s. Tabelle 3‑1

 

Zur Ermittlung der hydrotopklassenbezogenen Abflussbildungsparameter werden die Flächen­ver­teilungsfunk­tio­nen der Elementar­flächen­parameter abgeleitet, die nicht zur Hydrotopklassifizierung genutzt wurden und die deshalb innerhalb einer Hydrotopklasse nicht einheitlich sind. Dabei werden die folgenden Arbeitsschritte durchlaufen:

 

  • a) Selektion aller Elementarflächen eines Teileinzugsgebietes und einer Hydro­top­klasse,
  • b) Berechnung der Gesamtfläche aller mit Parametern wertmäßig belegten[1] Ele­mentar­flächen einer Hydro­top­klasse innerhalb der übergeordneten Bezugsgeometrie,
  • c) Ermittlung der Wasserflächenanteile AW,
  • d) Ermittlung der versiegelten Flächenanteile AIMP,
  • e) Ordnen der selektierten Elementarflächen entsprechend der Werte der Ele­mentar­flächenpa­rameter, mit dem kleinsten beginnend,
  • f) Bildung kumulativer, auf die Flächengröße 1 normierter Flächenanteile x, indem die Flächen ent­spre­chend der Reihen­fol­ge (nach b) fortlaufend auf­summiert und durch die Gesamtfläche dividiert ­wer­den,
  • g) Berechnung der Parameter a und b der linearen Regression in der Form y=a*x+b zwi­schen den Ele­men­tar­flächenparametern y und der aufsum­mier­ten Fläche x,
  • h) Berechnung des flächenbezogenen Mittelwertes und des Minimums und Maxi­mums der Flä­chen­ver­tei­lungs­funktio­n der Elementarflächen­para­me­ter,
  • i) Ermittlung der Flächenanteile AeHy der Hydrotopklassen am der übergeordneten Bezugsgeometrie, indem die Gesamtfläche auf die Fläche dieser Bezugsgeometrie bezogen wird,
  • j) Abgleich der Flächenanteile AeHy unter Einbeziehung von AW und AIMP auf 1.

Bei der Ermittlung der Flächen­ver­teilungsfunk­tio­nen wird also davon ausgegangen, dass diese li­near verlaufen. Ist dies nicht der Fall, sollte die Hydrotopklasseneinteilung entsprechend verfeinert werden. Ein Beispiel dafür wird in Abbildung 3-6 gegeben.

 

image

Abbildung 3-6: Ausgliederung von Hydrotopklassen

 

Die Schritte a) und b) werden programmintern für jedes Teileinzugsgebiet und alle Hydro­top­klassen durchgeführt, e) bis h) außerdem für jeden Abflussbil­dungsparame­ter.

Folgende Besonderheiten bilden die Ausnahmen bei obiger Vorgehensweise:

SMXN wird nur für die grundwassernahen Flächen als Maximum der Flä­chen­ver­tei­lungs­funktio­n der elementarflächenbezogenen Spei­cher­kapazi­täten des Luftpo­ren­raumes ermittelt. Geht man davon aus, dass es auch Flächen gibt, deren Speicherraum Null ist, weil das Grundwasser an der Geländeoberkante ansteht, so ergibt sich der flächenbezogene Speicherraum zu

 

\fn_jvn SNM = Fak \cdot SMXN
Gl. 2-36

 

wobei Fak = 0.5 wäre, wenn sich für die Flächenverteilung der EFL-Speicherkapazitäten ein Dreieck (s. Abbildung 2-2) ergäbe.

Für die Regressionsanalysen der hydraulischen Leitfähigkeiten KFH wird auf Grund des großen Schwankungsbereichs dieser Werte eine logarithmi­sche Trans­formation durch­geführt.

 

Teilgebietsbezogene Verwaltung von Abflussbildungsparametern in der GIS-Datenbasis

Sofern in einem großräumigen, z.B. länderübergreifenden Modell unterschiedliche Bodendatenbasen verwendet werden, kann es sich als notwendig erweisen, bestimmte Abflussbildungsparameter, die bisher einheitlich für das Gesamtgebiet vorgegeben wurden, räumlich differenziert zu belegen.

Diese räumlich differenzierte Vorgabe von Modellparametern wurde bisher integriert für die

VERDUNSTUNGSREDUKTION und den SAETTIGUNGSABFLUSSFAKTOR. Beide Parameter sind empirisch und können global innerhalb der modul.ste belegt werden.

Sollen sie räumlich differenziert angegeben werden, so ist das dann möglich, wenn mit EGMO auf der Basis von Teileinzugsgebieten gearbeitet werden soll. Den Teilgebieten sind dann als Attribute Werte für die Verdunstungsreduktion und/oder die Sättigungsflächenbildung zuzuweisen, deren Namen über die tg.sdf dem Programm bekanntgemacht werden müssen.

######  Attribut-Tabelle  ####################################################
TG_PAT                 DBASE tg3.dbf
TG_FLAECHE             AREA
TG_IDENTIFIKATION      Tg_dis
GW_Unterlieger         GW_uli1
GW_Verlust             GW_out1
X_WERT_TG              X_Coord
Y_WERT_TG              Y_Coord
MITTLERE_HOEHE         Hoehe
GEFAELLE               Gef
EXPOSITION             Aspect
VERDUNSTUNGSREDUKTION    Verd_Red  /* 0. fuer stark   bis 1.0 fuer schwach        */
SAETTIGUNGSABFLUSSFAKTOR Satt_Fak /* wachsender Faktor bewirkt eine Reduzierung   */
                                  /* des Saettigungsflaechenabflusses (0.5 default*/
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 

Die beiden Parameter wirken erst im Zuge der Modellrechnung, d.h. die Speicherkapazitäten werden ohne die Korrekturfaktoren abgespeichert.

 


[1] Wertmäßig nicht be­legt bedeu­te­t, dass kein Wert für die Elementar­flächen­parameter berech­net werden kann, weil entweder in den Ausgangskarten zur Erzeugung der Elementarflächen Informationslücken vorhanden sind (z.B. sind in den meisten Boden­karten Ortschaften und größere Standgewässer ausgespart) oder im Zuge der Flächenverschneidung Splitterpolygone erzeugt wurden. Ein Vorteil dieses Konzeptes ist es also, dass auch bei Informationsdefiziten ohne größere Fehler flächendeckend gearbeitet werden kann, da für die nicht belegten Flächen indirekt mittlere Eigenschaften angesetzt werden.


03.5 Schnittstellen

Print Friendly, PDF & Email

Sämtliche Systemgrößen werden im Modul ABI_MOD verwaltet und über die in Abbildung 3-7 und Tabelle 3‑3 angegebenen Bibliotheksfunktionen dem Modell zur Verfügung gestellt.

 

int AbiModIni ();
int AbiModRun (void);
float * Abi_Muldenspeicherfuellung (int);
float * Abi_Interzeptionsfuellung (int);
float * Abi_Bodenspeicherfuellung_1 (int);
float * Abi_Bodenspeicherfuellung_2 (int);
float * Abi_Bodenspeicherfuellung_3 (int);
float * Abi_Bodenspeicherfuellung_4 (int);
float * Efl_Muldenspeicherkapazitaet (int);
float * Efl_KfRepraesentativ (int);
float * Efl_NutzbareFeldkapazitaetRep (int);
float * Efl_SickerwasserkapazitaetRep (int);
float * Efl_Bodenmaechtigkeit (int);
float * Hyd_VersiegelterAnteil (int);
float * Hyd_Muldenspeicherkapazitaet (int);
float * Hyd_Interzeptionsspeicherkap (int);
float * Hyd_Hsc (int);
float * Hyd_Hmx (int);
float * Hyd_Gmn (int);
float * Hyd_Gmx (int);
float * Hyd_Snm (int);
float * Hyd_Hlff ();

Abbildung 3-7: Prototypen der Bibliotheksfunktionen in EFL_MOD

Innerhalb des Anweisungsblocks ABI_MODELL in der Steuerdatei MODUL.STE (s. Abbildung 3-7) kann festgelegt werden, ob die Modellparameter in einer Tabelle gespeichert werden sollen. Im GIS können die Parameter dann visualisiert und auf Plausibilität geprüft werden.

Weiterhin können für die hydrotopbezogene Modellierung globale Parameter festgelegt werden. Globale Parameter sind empirischer Natur, so dass eine einheitliche bzw. globale Festlegung für alle Hydrotopklassen gewählt wurde. In der jetzigen Modellversion ist hier lediglich HLFF zur Steuerung der Verdunstung innerhalb des Bodenwasserhaushaltsmodells BOKA2 zu definieren.


Tabelle 3‑3: Kurzbeschreibung der Bibliotheksfunktionen in EFL_MOD

Name Übergabe Rückgabe Aufgabe
AbiModIni n_area Initialisierung des Modells, Rückgabe n_area als Anzahl der zu modellierenden Geometrien
AbiModRun k Abarbeitung des Modells für aktuellen Zeitschritt, k>0 zeigt an, dass Direktabfluss gebildet wurde
Abi_<xxx> i Referenz Systemzustandsgröße <xxx> für Geometrie i
Efl_<xxx> i_efl Referenz gibt Referenz auf angegebenen Wert der Elementarfläche i_efl
Hyd_<xxx> i_hyd Referenz gibt Referenz auf angegebenen Wert der Hydrotopklasse i_hyd

 

Als empirische Transformation wird ebenfalls ein „Niederschlagsfaktor“ genutzt. Dieser dient bei langen und damit für die Beschreibung der Infiltration nicht mehr prozessadäquaten Berechnungszeitschritten[1] zur Verringerung der Kf-Werte, wodurch im Infiltrationsmodell die Effektivniederschlagsbildung erhöht wird.

Der SAETTIGUNGSABFLUSSFAKTOR bietet eine Möglichkeit, den Sättigungsflächenabfluss zu variieren. Er entspricht dem Faktor in Gl. 2-36.

 

ABI_MODELL
WASSERHAUSHALTSMODELL   WH_ZR   /* WH_RZ, WH_ZR - wird nur ausgewertet, wenn   */
                                /* Wasserhaushaltsmodell separat gerechnet wird*/
                                /* modell separat gerechnet wird               */
ZEITFAKTOR_NIEDERSCHLAG    1.   /* führt zur Reduktion des kf-Wertes          */
                                /* bei geringer Zeitauflösung                 */
MET_VORGESCHICHTE          0.5  /* 0. für trocken bis 1.0 für feucht         */
VERDUNSTUNGSREDUKTION      0.3  /* 0. für stark   bis 1.0 für schwach        */
SAETTIGUNGSABFLUSSFAKTOR   0.5  /* wachsender Faktor bewirkt eine Reduzierung   */ 
                                /* des Saettigungsflaechenabflusses (0.5 Standard)*/
 
PARAMETER_TAB_SPEICHERN?   Ja

Abbildung 3-7: Steuerdatei MODUL.STE – Block ABI_MODELL


[1] Informationen über die Intensitätsverteilung während eines kurzzeitigen Konvektivniederschlages gehen bei Verwendung von Tagessummen des Niederschlages völlig verloren.