02. Modellierungskonzeption


02.1 Zielstellung

Print Friendly, PDF & Email

Entsprechend den Ausführungen im vorigen Kapitel wurde das Modellsystem EGMO (Becker 1975, Pfützner 1990) grundlegend überarbeitet und eine Modellierungskonzeption entwickelt und programmtechnisch umgesetzt, die auf der Grundlage einer definierten GIS-Datenbasis eine informations-, problem- und prozessadäquate Verarbeitung dieser Informationen bei der hydrologischen Modellierung gestattet. Der Modellanwender kann je nach Aufgabenstellung und verfügbarer Datenbasis mit unterschiedlich detaillierten Modellen in verschiedenen Raum- und Zeitdiskretisierungen arbeiten. Das Konzept ist weitgehend modular und offen angelegt, so dass Komponenten des Systems zur Anbindung anderer Modelle an die GIS-Daten genutzt werden können.


02.2 Räumliche Diskretisierung und grundlegendes Herangehen bei der Modellstrukturierung

Print Friendly, PDF & Email

Die Simulationsgüte von physikalisch begründeten Modellen hängt entscheidend von der Verfügbarkeit von Informationen über die zeitliche und räumliche Variabilität der Systemeingänge, -eigenschaften und -zustände ab. Speziell bei flächendifferenzierten (gegliederten) Modellen ist es sinnvoll und notwendig, eine der Problemstellung, den hydrologischen Bedingungen und der Dimension des Untersuchungsraumes (örtlich und zeitlich) adäquate Diskretisierung zu wählen.

Das Ziel dabei ist es, die Diskretisierung problemadäquat (so detailliert wie nötig), informations- und prozessadäquat (so detailliert wie möglich) vorzunehmen.

Problemadäquate Diskretisierung heißt, dass eine der Zielstellung der Modellierung entsprechende räumliche Differenzierung der Ergebnisse ermöglicht wird, z.B. für vorgegebene Pegel, Gewässerstrecken, Geländeprofile.

Informationsadäquate Diskretisierung heißt, dass die Diskretisierung grundsätzlich entsprechend der räumlichen Variabilität und Verfügbarkeit der Eingangsdaten und Prozessparameter erfolgt. Hierbei sind allerdings gewisse, schwer zu quantifizieren­de Ab­hän­gigkei­ten zu beachten. So ist es nicht sinnvoll, bei der Nutzung von Satel­li­tendaten (z.B. für die Vegetationsbedeckung) ­die räum­li­che Mo­dell­dis­kreti­sierung entspre­chend der hier teilweise verfüg­baren Auflösung (30*30m Grids) zu wäh­len, wenn auf der anderen Seite die Auflösung anderer, hydrologisch relevanter Daten wesent­lich gröber ist.

Prozessadäquate Diskretisierung heißt, dass für die verschiedenen hydrologischen Teilprozesse solche Flächengliederungen gewählt werden, die „homogene“ Systemantworten erwarten lassen. Die Systemantworten werden durch die Eigenschaften des Systems bestimmt. Es ist sinnvoll, für unterschiedliche Teilprozesse unterschiedliche Diskretisierungen zu wählen, weil die einzelnen Systemeigenschaften (Boden, Vegetation, Gefälle, …) in unterschiedlicher Weise auf die verschiedenen hydrologischen Teilprozesse wirken und sich bezüglich ihrer räumlichen Verteilung, aber auch ihrer räumlichen Heterogenität unterscheiden. Eine unterschiedliche räumliche Diskretisierung für verschiedene Teilprozesse erfordert wiederum eine adäquate Strukturierung des Modells.

Dies erfor­dert für die Modellierung:

  • eine adäquate Struk­turie­rung des Mo­dells,
  • entsprechende Diskretisierungs­techniken,
  • die Organisation der Datenflüsse zwischen den in unterschiedlichen Raumeinheiten arbeitenden Teilmo­dellen über Raumbezüge.

Dabei bietet sich die Anwendung Geographi­scher Informationssysteme (GIS) direkt an, deren Funktionalität auch eine effektive räumliche Diskretisierung gestattet.

Ein entscheidender Schritt bei der Strukturierung hydrologischer Einzugsgebietsmodelle ist die Untergliederung des Modells in die beiden Domänen Abflussbildung (ver­tika­le Prozesse) und Abflusskonzentration (laterale Prozesse) (Becker und Nemec 1987). Grundsätzlich sind weitere Unterteilungen in weitere Modellebenen jederzeit möglich.

Jede Modellebene besitzt eine spezifische Diskretisierung in Raumelemente entsprechend der räumlichen Variabilität der maßgeblichen, prozessbeeinflussenden Raumeigenschaften (s. Tabelle 2.2‑1). Diese sind bei den vertikalen Prozessen primär die Landnutzung und Landbedeckung (Vegetationstypen), sowie die Bodentypen und die Topographie, bei den lateralen Prozessen hingegen primär die Topographie und die hydrologischen Bedingungen im Untergrund.

Im Mittelpunkt der folgenden Darlegungen steht die Diskretisierung für die einzelnen Teil­prozesse in den verschiedenen zu betrachtenden Modellebenen. Eine Be­schreibung spezifi­scher Teilmodelle erfolgt im Teil II dieser Dokumentation.

 

Tabelle 2.2‑1: Raumbezogene Informationen und Modellstrukturen

Beispiele für Rauminformationen Domäne Teilprozess Ebene
Höhe, Exposition, Gefälle Abflussbildung
(vertikal)
Hydrometeorologie MET
Landnutzung, Boden, Grundwasserflurabstand Interzeption, Infiltration,Perkolation, Verdunstung ABI
Fließlänge, Geländegefälle, Land­nut­zung (Rau­hig­keit) Abfluss-konzentration (lateral) – auf der Land­ober­fläche RD
Fließlänge, Gerinnegefälle, Ger­innerauhig­keit  – im Gewässer  Q
Fließlänge, Geologie – im Untergrund (Grundwasserströmung) RW

 

Jedem Raumelement können ad­äquate Teil­prozessmo­delle zugeordnet werden. Die Datenflüsse zwischen den Raumelementen einer Ebene und zwischen den verschiedenen Ebenen werden über Bezüge in der GIS-Datenbasis organisiert. Eine Übersicht über die Modellstrukturierung gibt Abbildung 2.2‑1.

 

image

Abbildung 2.2‑1: Mehr – Ebenen – Modellkonzept

 

Je nach der zu lösenden Aufgabenstellung kann das Untersuchungsge­biet ein Flussgebiet sein, wenn der Abfluss bzw. seine Konzentration im Vordergrund steht, oder eine beliebig geformte Landflächeneinheit, wenn die Abflussbildung bzw. die Wasserhaushaltskompo­nenten des hydrologischen Regimes (z.B. Verdunstung, Bodenfeuchte oder Tiefenversickerung) Ziel der Untersuchung sind.


02.3 Räumliche Diskretisierungsvarianten für die Betrachtung der Abflusskonzentration

Print Friendly, PDF & Email

In einem Untersuchungsgebiet werden entsprechend der gewünschten räumlichen Diffe­ren­zierung der Ergebnisse zunächst im allgemeinen Teileinzugsgebiete für ausgewählte Gewässer­strecken, Fluss- oder Geländeprofile (problemadäquate Diskretisierung) und für verfüg­bare Pegel (in­formationsadäquate Diskretisie­rung) ausgegliedert. Unter Verwendung geeigneter Modellansätze kann die Abflusskonzentration integral für einzelne Teileinzugsgebiete beschrieben werden.

Im klassischen EGMO werden die Abflusskonzentrationsprozesse getrennt nach Abflusskomponenten je Teilgebiet beschrieben. Der Landoberflächenabfluss, einschließlich der Abflussprozesse im Gewässersystem wird dabei über eine Systemantwortfunktion (Faltung mit Impulsantwort) beschrieben, die unterirdischen Abflusskonzentrationsprozesse über Einzellinearspeicher- und ggf. Translationsansätze.

Für eine Vielzahl von Problemstellungen ist diese Vorgehensweise ausreichend und effizient.

Sind differenziertere Probleme zu lösen, die detaillierte und flächenbezogene Aussagen zu Einzelprozessen erfordern (z.B. Erosion), bietet es sich an, die landoberflächen-, gewässer- und grundwassergebundenen Abflusskonzentrationsprozesse getrennt zu modellieren und die entsprechenden Konzentrationsräume adäquat zu untergliedern (Diskretisierung von Flussstrecken in Teilabschnitte, Gebietsflächen in Teilflächen wie Hydrotope, Hydrotopklassen o.ä.).

Abflusskonzentration im Gewässersystem

Für detaillierte hydrologische oder hydraulische Abflussberechnungen im Gewässernetz wird dieses in Gewässerabschnitte untergliedert. Die Untergliederung erfolgt so, dass Systemknoten als Begrenzun­gen eines Gewässerabschnittes durch die Verzweigungen des Gewässernetzes (informations- und prozessadäquat), durch Aussageprofile (problemadäquat) und Pegel (informationsadäquat) gebildet werden. Eine Verfeinerung dieser Untergliederung erfolgt dann, wenn signifikante Wechsel der Systemeigenschaften (Gefälle, Rauhigkeit[1]) innerhalb eines Abschnittes zu verzeichnen sind (prozessadäquat).

Mit dieser Untergliederung wird erreicht, dass

  1. die prinzipielle Struktur des Gewässersystems erhalten bleibt,
  2. Aussagen für festzulegende Gewässerprofile möglich sind,
  3. ein Vergleich mit gegebenen Abflussbeobachtungen gewährleistet ist,

Eine angemessene Untergliederung impliziert, dass von einer hinreichenden Homogenität der Charakteristiken ausgegangen werden kann.

Abflusskonzentration auf der Landoberfläche

Den ausgegliederten Gewässerabschnitten sind ihre jeweiligen Eigeneinzugsgebiete zuzuordnen, die im allgemeinen aus zwei Abflusskaskaden gebildet werden – einer linken und einer rechten, bei Quellgebieten zusätzlich einer oberen. Diese Kaskaden sind dadurch gekennzeichnet, dass zwischen benachbarten Kaskaden keine Massenflüsse existieren (analog Stromröhre) und dass sie an einer Kammlinie beginnen und an einer Tallinie (i.d.R. Flusslauf) enden.

Eine Kaskade kann weiter in Segmente untergliedert werden, wenn teilflächenbezogene Unterschiede im Wasserhaushalt, speziell im Landoberflächenabfluss und durch diesen bedingte Wechselwirkungen von Flächen innerhalb einer Kaskade detaillierter erfasst werden sollen. Die Segmentgrenzen sind so zu wählen, dass jedes Segment genau ein unterliegendes Segment besitzt oder in den entsprechenden Flussabschnitt entwässert. Die Gliederung in Segmente ist insbesondere notwendig, wenn

  1. Aussagen über Abflussprozesse innerhalb von Kaskaden gemacht werden sollen, z.B. über Ab­trags- und Ablagerungsprozesse, und wenn die Beschreibung von Eintragspfaden im Vordergrund der Untersuchungen steht (pro­blemadäquat),
  2. Kaskaden durch signifikante „Störungen“ (z.B. Straßen u.ä) unterteilt werden (prozessadäquat),
  3. durch eine Segmentierung eine exaktere Beschreibung lateraler Abflussprozesse möglich wird. Dies ist z.B. dann der Fall, wenn in einer Kaskade „geordnete“ Eigenschaftsmuster erkennbar sind und sich eindeutige Wechselwirkungen (laterale Abflussprozesse) zwischen ihnen determiniert erfassen lassen – wie z.B. beim klassischen Zonenkonzept (Hochflächen, Hänge, Talauen) (prozess­adäquat).

Sofern in der Vertikalprozess-Domäne eine Gliederung in Hydrotope erfolgt (s.u.), können auch diese zur Segmentierung genutzt werden, was dann die modelltechnische Berücksichtigung von Wechselwirkungen zwischen verschiedenen Hydrotopen gestattet. In der Regel wird eine Kaskade aus einer Talaue, einem Hang und einer Hochfläche bestehen, deren Unterschiede im hydrologischen Regime (s. Tabelle 2.3‑1) ortsbezogen im Rahmen der Gebietsgliederung berücksichtigt werden können. Diese Unterschiede werden i.a. in erster Linie durch das Gefälle und den Grundwas­serflurabstand geprägt.

Tabelle 2.3‑1: Allgemeine Kennzeichnung von Unterschieden im hydrologischen Regime einer Talaue, eines Hanges und einer Hochfläche

  Talaue Hang Hochfläche
Gewässerabstand gering talformabhängig groß
Grundwasserflurabstand gering mittel bis groß groß
Gefälle gering mittel bis groß groß
Direktabflussbildung von Sättigungsflächen bei Starkregen gering
Direktabflusswirksamkeit groß bei hohem Grundwasserstand groß gering
Verdunstung i.d.R. potentiell feuchteabhängig feuchteabhängig
Grundwasserneubildung gering mittel bis groß mittel bis groß

 

Abflusskonzentration im Untergrund – Grundwasserabfluss

Die räumliche Gliederung zur Beschreibung der Abflussprozesse im Untergrund erfolgt wiederum problem- und prozessadäquat. Stehen reine Mengenbetrachtungen im Vordergrund, so ist vielfach aufgrund der geringen Abflussdynamik eine Beschreibung mit Linearspeicheransätzen mög­lich, was eine relativ grobe räumliche Strukturierung ermöglicht, aber auch erfordert. Hier bietet sich eine Modellierung auf Basis von Teileinzugsgebieten an, weil nur für beobachtete Teil­ein­zugs­gebieten die Einzellinearspeicherkonstanten abgeleitet werden können.

Sollen auch Stofftransportprobleme be­schrieben werden, ist bei der Grundwassermodellierung aus problemtechnischen und aus Stabilitätsgründen oft eine sehr feine­ Dis­kretisierung, z.B. in finite Elemente, notwendig.


[1] Fließquerschnitt, wie z.B. an Wehren, Stromschnellen, Flussseen o.ä.


02.4 Räumliche Diskretisierungsvarianten für die Betrachtung der Vertikalprozess innerhalb der Abflussbildung

Print Friendly, PDF & Email

Meteorologische Teilgebiete

Für die flächendetaillierte Modellierung der Vertikalprozesse ist es erforderlich, die meteorologischen Eingangsgrößen wie Niederschlag, Temperatur, Strahlung, die i.d.R. punktuell, d.h. an Stationen gemessen werden, auf die zu modellierenden Flächeneinheiten zu übertragen. Diese Übertragung kann direkt erfolgen, ohne für diese Modellebene eine gesonderte räumliche Diskretisierung einzuführen. Dazu werden für jede Modellierungseinheit die relevanten Stationen, z.B. nach dem Quadrantenverfahren ausgewählt und entsprechend ihrer Entfernung berücksichtigt. Des Weiteren fließen in die Übertragung die Eigenschaften der Fläche selbst und ihre Höhendifferenz zu den Stationen ein, wobei folgende Abhängigkeiten einbezogen werden können:

  • die Höhenabhängigkeit des Niederschlages, der Lufttemperatur und des Dampf­druckes,
  • die Abhängigkeit der Strahlungsintensität von Exposition und Geländeneigung und
  • der Einfluss der Flächennutzung auf die Albedo.

Bei großräumigen Modellierungen bietet sich an, eine Untergliederung in meteo­rologische Teilgebiete entsprechend der Repräsentativität der meteorologischen Stationen vorzunehmen. Damit kann über eine Gruppenbildung von Stationen verhindert werden, dass bei der Flächenübertragung Extrapolationen z.B. über Wetterscheiden, Gebirgskämme etc. hinweggehen.

Elementarflächen, Hydrotope und Hydrotopklassen

Maßgeblichen Einfluss auf die Abflussbildungsprozesse haben die Bodeneigenschaften, die Landnutzung bzw. die Vegetation und der Grundwasserflurabstand. Bei einer Untergliederung des Untersuchungsgebietes in Flächen, die bzgl. dieser Eigenschaften sowie der Systemeingänge, -parameter und -ausgänge als homogen angesehen werden können, entstehen Elementarflächen.

Sie stellen die kleinsten Informationseinheiten im Rahmen dieses Modellierungskonzeptes dar und gewährleisten in allen Modellebenen eine kongruente Informationsdiskretisierung für alle Teilprozesse. Elementarflächenbezogene Prozessmodellierungen sind allerdings insbesondere in größeren Maßstabsbereichen (Meso-, Makroskala) schon aus Aufwandsgründen problematisch. Für eine Reihe von Anwendungsfällen ist es effektiver, Elementarflächen zu Hydrotopen und Hydrotopklassen zusammenzufassen (vgl. Tabelle 2.3-1).

Ein Hydrotop wird durch zusammenhängende Elementareinheiten mit einem charakteristischen hydrologischen Regime (vgl. Becker 1975, Pfützner 1990) gebildet. Es ist durch ähnliche Systemeingänge und -eigenschaften gekennzeichnet und rea­giert „einheitlich“ (quasi homo­gen) bezüglich der maßgebenden Systemausgänge. Unter einer Hydrotopklasse wird die ortsunabhängige Zu­sammenfassung gleicher oder ähnlich wirkender Hydrotope innerhalb einer größeren Flä­cheneinheit ver­standen. Bei der Gliederung in Hydrotope und Hydro­topklassen kön­nen je nach Maßstabsbereich und zu lösender Aufgabenstellung unterschiedli­che Eigen­schaften ver­wendet werden.

Zur Verdeutlichung ein Beispiel: Elementarflächen werden entspre­chend ihrer Hauptflächennutzung Wald und Freiland zusammengefasst, weil die Vegetation einen wichtigen Einfluss auf die reale Verdunstung besitzt. Örtlich zusammenliegende Elementarflächen bilden ein Hydrotop. Die Zusammenfassung erfolgt damit aufgrund eines ähnlichen Verdunstungsregimes, obwohl durchaus noch Unterschiede aufgrund weiterer Inhomogenitäten bezüglich der Landnutzung und des Bodens exi­stieren kön­nen. Die Lage eines Hydrotops findet bei der weite­ren Mo­del­lie­rung keine Berück­sich­ti­gung. In die Modellie­rung geht nur der Flächen­anteil einer Hydro­topklasse als Zusammenfassung aller gleich­artigen bzw. ähnlich wirkenden Hydro­tope im betrachteten Untersuchungsgebiet, Teilgebiet (Kaskade o.ä.) ein.

Innerhalb eines Hydrotops oder einer Hydrotopklasse können flächenhafte Unterschiede in weiteren Eigenschaften, die nicht zur Hydrotopgliederung genutzt wurden (z.B. Bodenkenn­werte), statistisch über Verteilungsfunktionen ihrer Flächenanteile berücksichtigt werden (vgl. Becker 1975).


02.5 Schlussfolgerungen

Print Friendly, PDF & Email

Mit dem Modellsystem ArcEGMO ist es somit möglich, bei der Modellierung unterschiedliche Diskretisierungsprinzipien zur Flächenuntergliederung anzuwenden. Dabei kann bedarfsgerecht zwischen einer groben und einer feinen ortsabhängigen Gliederung (Einzugs- bzw. Teileinzugs­gebiete bis zu kleinen Kaskaden und Segmenten) und einer mehr oder minder detaillierten ortsunabhängigen Gliederung (variabel unter­setzte Hydrotopgliederung mit oder ohne statistische Vertei­lungsfunktionen) gewählt werden. Tabelle 2.5‑1 gibt eine Zusammenfassung der unterstützten Raumeinheiten und Abbildung 2.5‑1 eine grafische Darstellung raumbezogener Gliederungseinheiten.

 

Tabelle 2.5‑1: Definitionen der von EGMO unterstützten Raumeinheiten

Raumeinheit Definition
Elementarfläche gekennzeichnet durch homogene Systemein- und -ausgänge und Systemeigenschaften
Hydrotop zusammenhängende Elementareinheiten mit ähnlichem hydrologischen Regime, deren Systemeingänge und Systemparameter ähnlich sind und die bzgl. der maßge­benden Systemausgänge quasi homogen reagieren
Hydrotopklasse ortsunabhängige Zusammenfassung gleicher Hydrotope
Teileinzugsgebiet Einzugsgebiet eines Punktes im Untersuchungsgebiet, i.d.R. im Gewässersystem
Zwischengebiet Eigeneinzugsgebiet eines Gewässerabschnitts
Gewässerabschnitt Gewässerstrecke oder Teil einer Tallinie mit hinreichender Homogenität der Charakteristika (z.B. Gefälle, Rauhigkeit)
Abflusskaskade linker bzw. rechter Teil eines Zwischengebietes und Quellgebiete besitzen zusätzlich eine obere Kaskade.
Kaskadensegment Teil einer Abflusskaskade (z.B. nach dem Zonenkonzept) oder Hydrotop innerhalb einer Abflusskaskade

 

Welche Raumdiskretisierung und damit verbunden welche Modellstrukturierung gewählt wird, hängt letztlich von den konkreten Gegebenheiten ab und ist, wie eingangs diskutiert, in Abhängigkeit von der zu lösenden Aufgabenstellung und den zur Verfügung stehenden Eingangsinformationen zu entscheiden. Die Diskretisierung sollte demgemäß problem-, prozess- und informationsadäquat sein.

image

Abbildung 2.5‑1: Flächengliederung und Bezeichnungen wichtiger Gliederungs­einheiten

 

Wie beschrieben wurde, ist es formal möglich, für jede Modellebene eine eigene Flächendiskretisierung zu wählen, ohne die Diskretisierung vor- oder nachgeschalteter Ebenen zu betrachten. Dies gilt speziell für die drei Ebenen bzw. Domänen Hydrometeorologische Prozesse, Vertikalprozesse und Laterale Flüsse, wobei die bereits angesprochenen „übergreifenden“ Gliederungen nach Abflusskaskaden, Segmenten usw. beachtet werden müssen. In jedem Fall ist es möglich, in der Modellebene Hydrometeorologie die meteorologischen Eingangsgrößen auf Elementarflächen, Kaskadensegmente oder Teileinzugsgebiete zu übertragen oder einen gegebenen Blockinput für das gesamte Untersuchungsgebiet zu verwalten.

Eine Bearbeitung von Elementarflächen macht allerdings wenig Sinn, wenn anschließend die Abflussbildung hydrotopklassenbezogen beschrieben wird oder nur eine Eingangszeitreihe (Blockinput) für das betrachtete (Teil-)Einzugsgebiet vorliegt. Genauso wenig Sinn macht es, Hydrotopklassen auf Teileinzugsgebietsebene zu bilden, dann aber die Abflusskonzentration des Landoberflächenabflusses auf der Basis von Kaskadensegmenten zu beschreiben.

Letztlich bestimmen:

  • die Informationsverfügbarkeit der meteorologischen Daten und
  • die zur Beschreibung der Abflusskonzentration erforderliche Flächengliederung,

bis zu welchen Raumeinheiten die Abflussbildung ortsbezogen erfasst werden sollte und damit die Flächengliederung in dieser Modellebene.

Tabelle 2.5‑2 zeigt einige sinnvolle Möglichkeiten für die Flächenuntergliederung bei einer Gesamtwasserhaushaltsmodellierung unter Berücksichtigung der verschiedenen Modellebenen.

 

Tabelle 2.5‑2: Möglichkeiten der Flächengliederung innerhalb eines Gesamtmodells

Vertikalprozess-Domäne Lateralprozess-Domäne
Abflusskonzentration 
Hydrometeorologie Abflussbildung und Verdunstung auf der Landoberflä­che im Gewässernetz unterirdisch
Datenübertragung auf Modellierung für
TG HK innerhalb TG mit Ff TG HK innerhalb TG
TG HK innerhalb TG mit Ff KAS FGW TG
EFL EFL mit M KAS FGW TG
EFL EFL mit M KAS FGW FEM
KAS HK innerhalb KAS mit Ff KAS FGW TG
KAS KAS als H mit Ff KAS FGW TG
KAS KAS als H mit M KAS FGW TG
EFL – Elementarflächen, TG – Teileinzugsgebiete, KAS – Kaskadensegmente, FGW – Gewässerabschnitte, H – Hydrotope, HK – Hydrotopklassen, FEM – finite Elemente (bei Kopplung mit einem Grundwassermodell), Ff – Unterlegung von Flächenverteilungsfunktionen, M – Mittelwert

 

Somit kann die Modellierung der Abflussbildung für jede Elementarfläche durch­ge­führt werden. Die flächengewichteten Summen aller elementarflächenbezogenen Modellergeb­nisse eines Teilein­zugs­gebie­tes (bzw. Kaskade oder Segments) werden dann für jeden Zeitschritt an die nach­geord­neten Modell­ebe­nen übergeben (Direktabfluss an das Fließgewässermodell des zuge­ord­neten Flussab­schnit­tes und Grund­wasserneubildung an das Grundwassermodell – vgl. Abbildung 2.2‑1)

Es ist aber auch möglich, die Abflussbildung räumlich höher aggregiert zu beschreiben, indem Elementarflächen zu Hydrotopen zusammengefasst werden, die dann Segmente einer Abflusskaskade bilden, oder Hydrotopklassen innerhalb der Teileinzugsgebiete gebildet und Kaskadensegmenten zugeordnet werden.