02.4 Räumliche Diskretisierungsvarianten für die Betrachtung der Vertikalprozess innerhalb der Abflussbildung

Print Friendly, PDF & Email

Meteorologische Teilgebiete

Für die flächendetaillierte Modellierung der Vertikalprozesse ist es erforderlich, die meteorologischen Eingangsgrößen wie Niederschlag, Temperatur, Strahlung, die i.d.R. punktuell, d.h. an Stationen gemessen werden, auf die zu modellierenden Flächeneinheiten zu übertragen. Diese Übertragung kann direkt erfolgen, ohne für diese Modellebene eine gesonderte räumliche Diskretisierung einzuführen. Dazu werden für jede Modellierungseinheit die relevanten Stationen, z.B. nach dem Quadrantenverfahren ausgewählt und entsprechend ihrer Entfernung berücksichtigt. Des Weiteren fließen in die Übertragung die Eigenschaften der Fläche selbst und ihre Höhendifferenz zu den Stationen ein, wobei folgende Abhängigkeiten einbezogen werden können:

  • die Höhenabhängigkeit des Niederschlages, der Lufttemperatur und des Dampf­druckes,
  • die Abhängigkeit der Strahlungsintensität von Exposition und Geländeneigung und
  • der Einfluss der Flächennutzung auf die Albedo.

Bei großräumigen Modellierungen bietet sich an, eine Untergliederung in meteo­rologische Teilgebiete entsprechend der Repräsentativität der meteorologischen Stationen vorzunehmen. Damit kann über eine Gruppenbildung von Stationen verhindert werden, dass bei der Flächenübertragung Extrapolationen z.B. über Wetterscheiden, Gebirgskämme etc. hinweggehen.

Elementarflächen, Hydrotope und Hydrotopklassen

Maßgeblichen Einfluss auf die Abflussbildungsprozesse haben die Bodeneigenschaften, die Landnutzung bzw. die Vegetation und der Grundwasserflurabstand. Bei einer Untergliederung des Untersuchungsgebietes in Flächen, die bzgl. dieser Eigenschaften sowie der Systemeingänge, -parameter und -ausgänge als homogen angesehen werden können, entstehen Elementarflächen.

Sie stellen die kleinsten Informationseinheiten im Rahmen dieses Modellierungskonzeptes dar und gewährleisten in allen Modellebenen eine kongruente Informationsdiskretisierung für alle Teilprozesse. Elementarflächenbezogene Prozessmodellierungen sind allerdings insbesondere in größeren Maßstabsbereichen (Meso-, Makroskala) schon aus Aufwandsgründen problematisch. Für eine Reihe von Anwendungsfällen ist es effektiver, Elementarflächen zu Hydrotopen und Hydrotopklassen zusammenzufassen (vgl. Tabelle 2.3-1).

Ein Hydrotop wird durch zusammenhängende Elementareinheiten mit einem charakteristischen hydrologischen Regime (vgl. Becker 1975, Pfützner 1990) gebildet. Es ist durch ähnliche Systemeingänge und -eigenschaften gekennzeichnet und rea­giert „einheitlich“ (quasi homo­gen) bezüglich der maßgebenden Systemausgänge. Unter einer Hydrotopklasse wird die ortsunabhängige Zu­sammenfassung gleicher oder ähnlich wirkender Hydrotope innerhalb einer größeren Flä­cheneinheit ver­standen. Bei der Gliederung in Hydrotope und Hydro­topklassen kön­nen je nach Maßstabsbereich und zu lösender Aufgabenstellung unterschiedli­che Eigen­schaften ver­wendet werden.

Zur Verdeutlichung ein Beispiel: Elementarflächen werden entspre­chend ihrer Hauptflächennutzung Wald und Freiland zusammengefasst, weil die Vegetation einen wichtigen Einfluss auf die reale Verdunstung besitzt. Örtlich zusammenliegende Elementarflächen bilden ein Hydrotop. Die Zusammenfassung erfolgt damit aufgrund eines ähnlichen Verdunstungsregimes, obwohl durchaus noch Unterschiede aufgrund weiterer Inhomogenitäten bezüglich der Landnutzung und des Bodens exi­stieren kön­nen. Die Lage eines Hydrotops findet bei der weite­ren Mo­del­lie­rung keine Berück­sich­ti­gung. In die Modellie­rung geht nur der Flächen­anteil einer Hydro­topklasse als Zusammenfassung aller gleich­artigen bzw. ähnlich wirkenden Hydro­tope im betrachteten Untersuchungsgebiet, Teilgebiet (Kaskade o.ä.) ein.

Innerhalb eines Hydrotops oder einer Hydrotopklasse können flächenhafte Unterschiede in weiteren Eigenschaften, die nicht zur Hydrotopgliederung genutzt wurden (z.B. Bodenkenn­werte), statistisch über Verteilungsfunktionen ihrer Flächenanteile berücksichtigt werden (vgl. Becker 1975).