7. Modellebenen

7.1 Modellstrukturen und Raumdiskretisierungen
7.2 Datenflüsse
7.3 Modellebene Meteorologie – MET
7.4 Modellebene Abflussbildung – ABI
7.5 Modellebene Direktabflusskonzentration – RD
7.6 Modellebene Basisabflusskonzentration – GW
7.7 Modellebene Gesamtabfluss – Q


7.1 Modellstrukturen und Raumdiskretisierungen

Zur Beschreibung der hydrologischen und hydrometeorologischen Prozesse werden diese zu Domänen und Ebenen zusammengefasst. Folgende Modellebenen werden in ArcEGMO unterschieden:

  1. METEOR zur Ermittlung der meteorologischen Modelleingangsgrößen und ihre Übertragung auf die im Rahmen der Abflussbildungsberechnung zu modellierenden Flächen,
  2. ABI zur Beschreibung der Abflussbildung,
  3. RD zur Beschreibung der Abflusskonzentration auf der Landoberfläche,
  4. GW zur Beschreibung der Abflusskonzentration im Grundwasser und
  5. Q zur Beschreibung der Abflusskonzentration im Gewässernetz.

Die Modellebenen METEOR und ABI bilden gemeinsam die Vertikalprozess-Domäne, RD, GW und Q die Lateralprozess-Domäne.

Wie Tabelle 7.1‑1 zeigt, können je nach Aufgabenstellung und zur Verfügung stehender Datenbasis die Modellierungen in den einzelnen Ebenen unterschiedlich detailliert bzgl. der Prozessbeschreibung und der Raumgliederung vorgenommen werden. Welche Raumauflösung für die einzelnen Ebenen gewählt wird, ist innerhalb der Steuerdatei ARC_EGMO.STE (s. Kapitel 3) festzulegen.

Tabelle 7.1‑1: Übersicht über die einzelnen Modellebenen

EbeneRaumauflösunginterne UntergliederungProzessbeschreibung
METEOREFL, KAS, TG oder GEBNiederschlagskorrektur, Schneeschmelze, pot. Verdunstung nach Penman, Turc/Ivanov oder Haude
ABIEFLSpeicheransätze für homogene Standorte
KAS, TG oder GEBHydrotopklassenSpeicheransätze mit Flächenverteilungsfunktionen
RDKASkinematische Welle
TG oder GEBAbflusskomponenten nach HydrotopenSpeicherkaskaden
GWTGAbflusskomponenten nach TeileinzugsgebietenEinzellinearspeicher
GEBAbflusskomponenten nach Hydrotopen
QFGW, TG, GEBkinematische Welle oder Speicherkaskaden
TG oder GEBSystemantwortfunktionen

Abbildung 7.1‑1 zeigt im Sinne einer Übersichtsdarstellung mögliche Raumdiskretisierungen in den einzelnen Modellebenen.

image

Abbildung 7.1‑1: Mögliche Raumdiskretisierungen in den Modellebenen

Jede Modellebene

  • besteht aus verschiedenen Modulen zur Beschreibung hydrologisch relevanter Teilprozesse,
  • nutzt die in den Programmkomponenten bereitgestellten Schnittstellen zu den raum- und zeitbezogenen Ein- und Ausgangsdaten und
  • übernimmt bzw. übergibt Werte von bzw. nach anderen Modellebenen.

Die (vorrangig) vertikalen Prozesse werden von den Modellebenen MET und ABI beschrieben, die lateralen Abflusskonzentrationsprozesse in den Ebenen RD, GW und Q behandelt.

Abbildung 7.1‑2 zeigt die Funktionalitäten der in der Standardmodulbibliothek eingebundenen Module mit ihrer Zuordnung zu den Modellebenen.

Im Allgemeinen ist eine Modellebene wie folgt aufgebaut:

  • Über einen Eintrag in der Steuerdatei MODUL.STE (s. Abbildung 7.1‑3) sind Parameter vorgebbar, die die prinzipielle Abarbeitung steuern.
  • Ein Initialisierungsteil allokiert die notwendigen Speicherbereiche und ermittelt die Modellparameter und Startwerte.
  • Das eigentliche Modell organisiert die Simulation der Prozesse der jeweiligen Modellebene und ruft jeweils für den aktuellen Zeitschritt und das aktuelle Raumelement das in der Bibliothek abgelegte prozessbeschreibende Modul auf.
  • Eine weitere Routine gibt die eingangs belegten Speicherbereiche bei Bedarf wieder frei.
image

Abbildung 7.1‑2: Übersicht über die einzelnen Modellebenen

#################################################################################
MET_MOD1
VERDUNSTUNGS_BERECHNUNG      1  /* 0 GEGEBEN; 1 PENMAN, 2 TURC_IV, 3 HAUDE */
SCHNEEMODELL                 0  /* 0 Niederschlagsdargebote gegeben, */
                                /* 1 Taggradverfahren */
VERDUNSTUNGSKORREKTUR       1.0 /* Faktor zur Korrektur der berechneten bzw. */
                                /* gegebenen potentiellen Verdunstung */
NIEDERSCHLAGSKORREKTUR     1.05 /* Korrekturfaktoren zum Ausgleich von Wind- */
SCHNEEKORREKTUR            1.2  /* fehlern und Benetzungsverlusten */
GRENZTEMPERATUR            0.5  /* Grenzwert der Tagesmitteltemperatur, unter */
                                /* der Schneefall angenommen wird */
TESTDRUCK
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ABI_MODELL
ZEITFAKTOR_NIEDERSCHLAG     1. /* Eichgroesse, dient zur Anpassung des kf-Wertes*/   
                               /* < 1. : Reduktion bei geringer Zeitaufloesung */
                               /* zum Ausgleich von Informationsverlusten*/
                               /* ueber die "wahren" Niederschlagsinten- */
                               /* sitaeten */
                               /* > 1. : Erhoehung zur Beruecksichtigung von */
                               /* Makroporen etc. */
MET_VORGESCHICHTE          0.9 /* 0. fuer trocken bis 1.0 fuer feucht */
PARAMETER_TAB_SPEICHERN?     Ja
VERTEILUNGS_FUNKT_SPEICHERN? Ja
#################################################################################
RD_MODELL
ABFLUSSBILDUNG_ITERATIV      0     /* 1 Abflussbildung innerhalb oder */
                                   /* 0 ausserhalb der internen Zeitschleife */
#################################################################################
KINWAVE
FAK_FLIESSWEGVERLAENGERUNG   1.1
################################################################################
Q_MODELL
ZEITSCHRITTWEITE             1440.         /* in Minuten */
################################################################################
Q_ELS
RUECKGANGSFAKTOR          0.0002        /* Dient der Skalierung der modellintern */
                                        /* ermittelten Rueckgangskonstanten */
################################################################################
EGMO_GW
AFMN .50
SPEICHERUNG_DER_ELS_KONSTANTEN? JA
ABFLUSSKOMPONENTEN
RG 730 AFw AFa AFs AFB AIMP
RH 20 AH
RN 10 AW ANw ANa ANs ANB
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Abbildung 7.1‑3: Beispiel für eine Steuerdatei Modul.Ste


7.2 Datenflüsse

Tabelle 7.2‑1 gibt eine Übersicht über die von ArcEGMO bereitgestellten Systemgrößen. Diese Größen – programmtechnisch sind dies Routinen, die auf Speicheradressen verweisen – haben 3 Funktionen.

  1. Sie ermöglichen den Modulen, zeitlich variable Größen zu verwalten (z.B. Speicherfüllungen).
  2. Diese Größen können gleichzeitig Ergebnisgrößen und damit Input in die Ergebnisauswertung sein.
  3. Außerdem werden über einen Teil dieser Funktionen die einzelnen Modellebenen miteinander verbunden bzw. die räumlich verknüpften Datenflüsse organisiert.

So liefert MET das Niederschlagsdargebot und die potentielle Verdunstung für ABI, die wiederum neben der realen Verdunstung als Ergebnisgröße den Landoberflächenabfluss und die Grundwasserneubildung als Eingang für RD und GW bereitstellt. Über den Anteil von RO, der in der Ebene RD nicht dem Gesamtabfluss Q zugeordnet wird, weil er beispielsweise nicht das Gewässersystem erreicht, existiert eine Rückkopplung zu ABI, weil dieser Anteil wieder zur Versickerung angeboten wird. Letztlich liefern RD und GW die Inputgrößen für die Modellebene Q, die den Gesamtabfluss ermittelt.

Die Modellebene METEOR dient neben der Ermittlung und Flächenübertragung meteorologischer Daten gleichzeitig zur Verwaltung der Zeitreihen und wurde deshalb bereits ausführlich im Kapitel 5.2 beschrieben.

Die ermittelten Parameter werden im aktuellen Ergebnisverzeichnis ..RESULTS<VAR1>PARA gemeinsam mit ihrem Raumbezug in der Datei <Räumliche Bezugsebene>_<Modellebene>.par (z.B. TG_ABI.PAR) gespeichert. Über den Raumbezug ist eine Georeferenzierung der ermittelten Parameter und damit eine visuelle Plausibilitätsprüfung im GIS möglich. Beim nächsten Simulationslauf wird vom Programm geprüft, ob die entsprechende Parameterdatei gefunden wird und dann eingelesen. Somit kann die aus GIS-Daten abgeleitete Erstschätzung der Modellparameter für die weiteren Modellanwendungen geändert werden.

Während des Simulationslaufes wird innerhalb der Modellorganisation jeder Ebene sichergestellt, dass insbesondere für die Abflusskonzentrationsberechnungen eine Abarbeitung der einzelnen Raumelemente von „oben nach unten“, also hierarchisch, stattfindet.

Im folgenden wird also nur noch ausführlich auf die Modellebenen ABI, RD, GW und Q eingegangen und ihre Verknüpfungsmöglichkeiten miteinander erläutert, während die prozessbeschreibenden Module im Teil II dieser Dokumentation behandelt werden.

Tabelle 7.2‑1: Wichtige Systemgrößen in ArcEGMO

Name der FunktionBedeutung
Met_KorNiederschlagErgebnis MET, Input für ABI
Met_PotVerdunstungErgebnis MET, Input für ABI
Met_KlimaWasserbilanzErgebnis MET
Met_LufttemperaturErgebnis MET
Met_GlobalstrahlungErgebnis MET
Met_RelSonnenscheindauerErgebnis MET
Met_DampfdruckErgebnis MET
Met_SchmelzwasserabgabeErgebnis MET
Met_WindstaerkeErgebnis MET
Met_SchneespeicherFestErgebnis MET
Met_SchneespeicherFluessigErgebnis MET
Met_BodenwaermeErgebnis MET
Abi_EffektivniederschlagErgebnis ABI
Abi_GrundwasserneubildungErgebnis ABI, Input GW
Abi_HypodermischerAbflussErgebnis ABI
Abi_LandoberflaechenabflussErgebnis ABI, Input RD
Abi_RealeVerdunstungErgebnis ABI
Abi_BodenfeuchteAbsErgebnis ABI
Abi_BodenfeuchteDefErgebnis ABI
Abi_InterzeptionsfuellungSystemgröße ABI
Abi_KapillarwasserAustauschErgebnis ABI
Abi_MuldenspeicherfuellungSystemgröße ABI, Input für RD
Abi_BodenspeicherfuellungSystemgröße ABI
Rd_AbflussErgebnis RD, Input Q
Rd_InhaltErgebnis RD, Input für ABI
Rd_OberliegerzuflussErgebnis RD
Els_InputSystemgröße GW
Gw_OutputSystemgröße GW, Input für Q
Q_AbflussErgebnis Q
Q_DirektzuflussErgebnis Q, Input für RD
Q_EigengebietszuflussErgebnis Q
Q_ExternzuflussErgebnis Q
Q_GrundwasserzuflussErgebnis Q, Input für GW
Q_InhaltErgebnis Q
Q_InputErgebnis Q
Q_OberliegerzuflussErgebnis Q
Q_VorlandInhaltErgebnis Q
Q_WasserstandErgebnis Q

7.3 Modellebene Meteorologie – MET

Dieser Modellteil dient zur Verwaltung stationsbezogener, meteorologischer Zeitreihen und deren Übertragung auf meteorologische Modellflächen gemäß der dafür gewählten Raumdiskretisierung (s. Steuerdatei ARC_EGMO.STE in Kapitel 3).

Werden in den Stationsreihen Fehlwerte festgestellt, z.B. durch Ausfall von Messgeräten etc., werden diese Fehlwerte je nach Anzahl der zur Verfügung stehenden Stationen wie folgt aufgefüllt:

1. Bei 2 Stationen werden die Lücken durch die Messwerte der anderen Station gefüllt. Weist auch diese hier einen Fehlwert auf, werden die folgenden Default-Belegungen verwendet:

  • Niederschlag 0. mm
  • Potentielle Verdunstung 0. mm
  • Lufttemperatur 8°C
  • Dampfdruck 10.
  • Sonnenscheindauer 0. h
  • Windstärke 0.5 Bf

2. Bei insgesamt 3 Stationen wird analog vorgegangen, jedoch wird hier das Mittel der beiden belegten Stationen verwendet.

3. Stehen mehr als 3 Stationen zur Verfügung, werden Fehlstellen aufgefüllt, indem für die betreffende Station das modifizierte Quadrantenverfahren (s. Kapitel 5) angewendet wird, d.h. die Messwerte von max. 4 umliegende Stationen berücksichtigt werden.

Die Vorgehensweise gemäß 1. oder 2. ist sicher meist sehr ungenau. Sie dient vor allem dazu, bei wenigen Ausfällen ein „Durchrechnen“ des Programms zu gewährleisten. Damit ist man jedoch nicht von der Notwendigkeit befreit, sich über einen fundierteren Fehlstellenausgleich Gedanken zu machen und diesen eventuell außerhalb von ArcEGMO vorzunehmen.

Neben dem Handling der Zeitreihen werden für die eigentlichen Berechnungen im Meteorologiemodul Grundgrößen für jede meteorologische Modellfläche berechnet wie:

  • Gefälle, Exposition und Albedo (aus den flächeninternen Elementarflächeneigenschaften) und
  • extraterrestrische Strahlung und relative Sonnenscheindauer in Abhängigkeit von Gefälle, Exposition, geographischer Breite und Tagesnummer.

7.4 Modellebene Abflussbildung – ABI

Die Abflussbildung kann je nach gewünschter räumlicher Auflösung

  1. für Elementarflächen oder
  2. für Kaskadensegmente, Teileinzugsgebiete bzw. das Gesamtgebiet

berechnet werden.

Liegt die räumliche Auflösung über der der Elementarflächen, so kann i.d.R. nicht mehr von quasi homogenen Flächen ausgegangen werden. Diese inhomogenen Flächen können modelliert werden, indem sie in Hydrotopklassen untergliedert und weitere Inhomogenitäten über Flächenverteilungsfunktionen berücksichtigt werden.

Im Zuge der Modellrechnungen werden die folgenden Wasserhaushaltsgrößen ermittelt:

  1. Effektivniederschlag PEF als Infiltrationsüberschuss,
  2. (pot.) Landoberflächenabfluss RO als Überlauf aus einem Muldenspeicher,
  3. reale Verdunstung ER und
  4. Sickerwassermenge bzw. Grundwasserneubildung GWN.

Je nach Aufgabenstellung kann das Abflussbildungsmodell innerhalb eines Niederschlag-Abfluss-Modells eingesetzt werden, wobei dann der Landoberflächenabfluss und die Grundwasserneubildung an die nachgeordneten Modellebenen zur Beschreibung der lateralen Abflussprozesse weitergegeben werden.

Für die Übergabe an nachgeordnete Modellebenen zur Beschreibung der lateralen Abflussprozesse werden der Landoberflächenabfluss und die Grundwasserneubildung räumlich aggregiert für die Bezugsgeometrien bereitgestellt.

Über die Steuerdatei MODUL.STE (s. Abbildung 7.4‑1) kann festgelegt werden, ob die Abflussbildungsparameter mit ihrem Raumbezug in der ASCII-Tabelle <RB>_abi.par (RB für Raumbezug, z.B. Elementarflächen oder Teileinzugsgebiete) gespeichert werden sollen. Im GIS können die Parameter dann visualisiert und auf Plausibilität geprüft werden.

Für Analyse- und Auswertezwecke wird die Speicherung von Flächenverteilungsfunktionen unterstützt. Gespeichert werden dabei nicht die kompletten Flächenverteilungsfunktionen, sondern nur die Punkte der Funktion mit einem neuen Parameterwert. Zieldatei ist die ASCII-Tabelle Flvf_par.xlx im Resultverzeichnis.

Ebenso können globale Parameter festgelegt werden. Globale Parameter sind empirischer Natur, so dass eine einheitliche bzw. globale Festlegung einheitlich für alle Elementarflächen bzw. Hydrotopklassen gewählt wurde.

In der jetzigen Modellversion sind dies die folgenden Einträge:

  • ZEITFAKTOR_NIEDERSCHLAG ist ein empirischer Faktor zur Skalierung der Kf-Werte. Er liegt im Bereich 0 < ZEITFAKTOR ≤ 1. Dieser Faktor kann aktiviert werden, wenn eine prozessadäquate Beschreibung des Infiltrationsprozesses nicht möglich ist. Dies ist insbesondere dann notwendig, wenn die zur Verfügung stehenden meteorologischen Daten eine geringe zeitliche Auflösung besitzen und deshalb mit großen Zeitschritten gearbeitet werden muss. In diesem Fall werden Direktabfluss auslösende Spitzenintensitäten des Niederschlages zu stark vergleichmäßigt, gleichzeitig erreichen die hydraulischen Leitfähigkeiten der Böden, da diese zeitintervallbezogene Werte sind, Größenordnungen, die die Niederschlagshöhen bei weitem überschreiten, so dass vom Modell ohne diese Skalierung kein Direktabfluss berechnet wird. Wird ein Zeitfaktor > 1 gewählt, so werden damit die über die Bodendatenbasis vorgegebenen Kf-Werte vergrößert, was letztlich eine (wenn auch keine sehr elegante) Möglichkeit ist, die Wirkung von Makroporen abzubilden.
image
  • MET_VORGESCHICHTE erlaubt bei der programminternen Festlegung der Startwerte eine Berücksichtigung der meteorologischen Vorgeschichte.
  • Über die Festlegung der VERDUNSTUNGSREDUKTION ist es möglich, die Verdunstungsberechnung innerhalb des Abflussbildungsmoduls zu beeinflussen.
  • Über die Vorgabe einer Korrekturfunktion kann in den hinterlegten Modellen der Abflussbildungsebene die zeitliche Veränderung der Bodenkapillarwasserspeicherkapazitäten infolge der Wurzelentwicklung vereinfacht abgebildet werden. Verwendet wird hier eine Cosinusfunktion, deren Minimum durch den Parameter MIN_VEGETATIONS-FUNKTION definiert ist und deren Maximum 1 am Tag 182 zeitlich über den Kennwert MAX_VERSCHIEBUNG_VEGFUNKT gesteuert werden kann.
image
  • Der Frostfaktor und der SAETTIGUNGSABFLUSSFAKTOR werden nur im EGMO-Ansatz genutzt und werden demzufolge im Modul EGMO der Dokumentation beschrieben.
ABI_MODELL
ZEITFAKTOR_NIEDERSCHLAG   1.   /* Eichgroesse, dient zur Anpassung des kf-Wertes*/
                               /* kleiner 1. : Reduktion bei geringer Zeitaufloesung */
                               /* zum Ausgleich von Informationsverlusten*/
                               /* ueber die "wahren" Niederschlagsinten- */
                               /* sitaeten */
                               /* größer 1. : Erhoehung zur Beruecksichtigung von */
                               /* Makroporen etc. */
MET_VORGESCHICHTE          0.5 /* 0. fuer trocken bis 1.0 fuer feucht */
VERDUNSTUNGSREDUKTION      0.3 /* 0. fuer stark bis 1.0 fuer schwach */
MIN_VEGETATIONSFUNKTION    0.4 /* 1 bzw. keine Angabe --&gt; so wie bisher */
MAX_VERSCHIEBUNG_VEGFUNKT  -45 /* Verschiebung des Veg.Maximums [Tage] */
FROSTFAKTOR                0.3 /* s. EGMO-Dokumentation
SAETTIGUNGSABFLUSSFAKTOR   0.5 /* s. EGMO-Dokumentation
Bilanzausdruck               2 /* {0|1|2|3} mit 0=kein, 1=m3/s, 2=mm/DT, 3=l/s*km2*/
*GW-FLURABSTAND_vom_GW-Modell? Ja
*HYDROTOPANTEILE_LESEN? Ja
PARAMETER_TAB_SPEICHERN? Ja
VERTEILUNGS_FUNKT_SPEICHERN? Ja

Abbildung 7.4‑1: Steuerdatei MODUL.STE – Block ABI_MODELL

TG-EFL-AREA

Unterschiedliche Flächengrößen zwischen Elementarflächen und Teileinzugsgebieten können zu Problemen führen. Eine unterschiedliche Flächengröße bedeutet, dass die Flächensumme aller Elementarflächen innerhalb eines Teileinzugsgebietes ungleich der Größe des Teileinzugsgebietes ist. Das kann zum Beispiel in Landesmodellen in Randbereichen vorkommen, indem die Elementarflächen nicht mehr die gesamte Größe des Teileinzugsgebietes abdecken (siehe untenstehende Abbildung a). Auf der anderen Seite kann es vorkommen, dass bei sehr kleinen ausgewiesen Teileinzugsgebieten keine Elementarfläche zugewiesen werden kann (siehe u. Abb. b). Es kann auch vorkommen, dass die die Flächengröße aller Elementarflächen kleiner als die Fläche des Teileinzugsgebietes ist (siehe u. Abb. c).

a) TG > EFL
Verhältnis = 0.24
b) TG ohne EFL
Verhältnis = 0
c) TG < EFL
Verhältnis = 1.6

In ArcEGMO kann dafür in der modul.ste unter ABI_MODELL das Steuerwort FLAECHENKORREKTUR aktiviert werden. Damit werden entweder die EFL-Flaechen oder TG-Flächen aufeinander abgeglichen. Im Resultsverzeichnis wird die Datei TG-EFL-AREA.txt ausgegeben. Je nachdem welche Flächenkorrektur eingestellt wurde, wird dann mit der korrigierten Flächengröße (entweder EFL oder TG) gerechnet.

Modul.ste

#################################################################################
ABI_MODELL
FLAECHENKORREKTUR  1  /*  0 - keine Flaechenkorrektur (default) */
                      /* -1 - EFL-Flaechen werden auf die TG-Flaeche abgeglichen */
                      /*  1 - TG-Flaechen werden auf die EFL-Flaechensumme abgeglichen */
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

TG-EFL-AREA.txt

TgID   TgArea              EflSumArea                 Verhaeltnis
3624   18710322.21         4545625.000000             0.242947
6386   381.875450          0.000000                   0.000000
5423   2338.08703          3750.000000                1.603875

Es wird empfohlen die TG ohne EFL mit einem Verhältnis = 0 zu entfernen, denn die Teileinzugsgebiete würden keine Ergebnisse, bzw. 0-Werte enthalten.

Beim Rechnen mit gekoppelten Grundwassermodellen muss darauf geachtet werde, dass nur die TG-Fläche auf die EFL-Fläche abgeglichen werden darf, da es sonst zu Bilanzproblemen führt.


7.5 Modellebene Direktabflusskonzentration – RD

Die Konzentration des Direktabflusses kann mit den Raumdiskretisierungen Kaskadensegmente, Teileinzugsgebiete oder Gesamtgebiet beschrieben werden.

Zur Beschreibung der Prozesse können derzeit eingesetzt werden

  1. der Ansatz der kinematischen Welle oder
  2. die vollständige Translation innerhalb des Berechnungszeitschrittes DT.

Die integrierten Modelle werden ausführlicher im Teil II der Programmdokumentation beschrieben.

Bei der vollständigen Translation werden lediglich sämtliche Direktabflüsse, die in der Modellebene ABI ermittelt wurden, an die Modellebene Q weitergegeben, ohne dass Verzögerungseffekte berücksichtigt werden. Da dies letztlich auf die Verwendung einer Systemantwort mit einer Ordinate, die den Wert 1 besitzt, hinaus läuft, was die einfachste aller denkbaren Modellvorstellungen ist, kann auf eine weitere Beschreibung verzichtet werden.

Für spätere Versionen des Systems ArcEGMO ist vorgesehen, den Direktabfluss unter Verwendung verbesserter Systemantworten zu konzentrieren, die unter Nutzung relevanter Flächeneigenschaften ermittelt werden. Denkbar ist auch die Bildung von Direktabflusskomponenten, also die Zusammenfassung der Direktabflüsse von Flächentypen mit ähnlichen Eigenschaften bzgl. der Fließgeschwindigkeiten. Diese können z.B.

  • über komponentenbezogene Systemantworten, die z.B. in Abhängigkeit von der Oberflächenrauhigkeit als Funktion der Flächennutzung und des Geländegefälles ermittelt werden und/oder
  • bei geeigneten Hydrotopklassendefinitionen trotz der dabei zugrunde liegenden Ortsunabhängigkeit mittlere Nachbarschaftsbeziehungen und damit laterale Flüsse zwischen den Hydrotopklassen berücksichtigen.

RD_MODELL ABFLUSSBILDUNG_ITERATIV 0 /* 1 Abflussbildung innerhalb oder */ /* 0 ausserhalb der internen Zeitschleife */

Abbildung 7.5‑1: Steuerdatei MODUL.STE – Block RD_MODELL

Über die Steuerdatei MODUL.STE (s. Abbildung 7.4-1) kann festgelegt werden, wie die Abflussbildung behandelt wird. So ist bei Anwendung dynamischer Konzentrationsansätze wie der kinematischen Welle eine variable Zeitschrittsteuerung integriert, die in Abflussbildungsperioden den Abflusskonzentrationsprozess in hoher zeitlicher Auflösung berechnet. Die Abflussbildung wird dagegen i.d.R. entsprechend der zeitlichen Auflösung der meteorologischen Daten simuliert. Es besteht nun über die Option ABFLUSSBILDUNG_ITERATIV die Möglichkeit, in Niederschlagsperioden die Abflussbildung in derselben Zeitauflösung wie die Konzentration zu beschreiben. Diese sehr rechenzeitintensive Modellierung erlaubt eine gute Wiedergabe der Wiederversickerung des Landoberflächenabflusses auf seinem Weg zum Vorfluter.

Steuerung des gewässerwirksam werdenden Anteils des Direktabflusses

Die für die Modellebene Direktabfluss (RD) umgesetzte Modellvorstellung über die Konzentration des oberflächig oder oberflächennah fließenden Wassers zum Vorfluter ging von einem Schichtabfluss aus, der am Ende eines Zeitschrittes wieder zur Versickerung angeboten wurde. Damit war eine gewisse Zeitschrittabhängigkeit hinsichtlich der Gewässerwirksamkeit des Oberflächenabflusses verbunden, da bei kurzen Berechnungszeitschrittweiten der erneut versickernde Anteil höher als bei geringen Zeitschrittweiten war. Auf der anderen Seite wurden natürlich in der Modellebene ABI bei geringer zeitlicher Auflösung die Niederschlagsintensitäten geglättet und somit ein geringerer Oberflächenabfluss ermittelt. Inwiefern beide Effekte sich ausgleichen, wurde bisher von uns nicht untersucht.

Über einen neuen empirischen Parameter soll jetzt der Tatsache Rechnung getragen werden, dass die Modellvorstellung von einem Schichtabfluss nur für kurze Fließstrecken anwendbar ist, da der Oberflächenabfluss sich meist nach kurzen Fließwegen innerhalb des Mikroreliefs in Vertiefungen sammelt und vorgefundene „microchannels“ nutzt oder diese schafft. Ein Fließen, in wenn auch kleinen Gerinnen, findet also lange bevor das im Modell abgebildete Gewässersystem erreicht wird statt. Hat sich der Abfluss aber in diesen Mikrogerinnen konzentriert, fließt er dort zum einen mit höherer Geschwindigkeit ab und zum anderen ist die Wahrscheinlichkeit für eine erneute Versickerung wesentlich geringer, da die Kontaktfläche zum Boden geringer ist.

Ein einfacher Modellansatz, um festzulegen, welcher Anteil im Gerinne und welcher flächig abfließt, die Vorgabe eines Anteils des Direktabflusses, der das Mikrogerinne erreicht und nicht mehr zur Wiederversickerung angeboten wird. Dieser Anteil kann global, d.h. im gesamten Gebiet einheitlich wie folgt in der modul.ste vorgegeben werden.

RD_MODELL
UEBERTRITTSANTEIL_MIKROGERINNE 0.0 /* Anteil des Direktabflusses, der das Mikrogerinne*/
                                   /* erreicht und nicht mehr zur Wiederversickerung  */
                                   /* angeboten wird */
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Sofern für das RD-Modell als Raumauflösung TG gewählt wurde, wird außerdem eine räumlich differenzierte Vorgabe des Übertrittanteils unterstützt, indem im TG-Cover dazu ein Attribut vorgegeben werden kann.

UEBERTRITTSANTEIL_MIKROGERINNE AntMik /* Anteil des Direktabflusses, der das */
                                      /* Mikrogerinne erreicht und nicht mehr zur */
                                      /* Wiederversickerung  angeboten wird */
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Zuordnung des hypodermischen Abflusses

Der hypodermische Abfluss, der auf eine Fläche bei entsprechenden Bodeneigenschaften und ausreichendem Gefälle gebildet wird, erreicht nach dem bisherigen Modellkonzept unverzögert und in voller Höhe den nächsten Vorfluter (schnelle Komponente in SLOWCOMP) bzw. den letzten Gewässerabschnitt des Einzugsgebietes (RH aus dem BWHM), in dem die Bildungsfläche liegt.

Dieses Konzept stößt spätestens in abflusslosen Binneneinzugebieten (TG ohne entwässernden FGW) an seine Grenzen, ist aber auch normalen Einzugsgebieten problematisch, weil in der Realität Fenster in den schlecht durchlässiger Schichten zu einer Versickerung ins Grundwasser, ein Auslaufen dieser Schichten am Hangfuß diesen hypodermischen Abfluss wieder zu einem Oberflächenabfluss mit der Möglichkeit zur erneuten Infiltration werden lässt.

Eine physikalisch belastbare Lösung dieser Problematik ist nur möglich, wenn der hypodermische Abfluss auf seinem Weg zum Vorfluter modelliert wird, was eine Berücksichtigung der Nachbarschaftsbeziehungen der Modellierungseinheiten (meist EFL) erfordert, die in ArcEGMO derzeit nicht unterstützt wird.

Folgende pragmatische Lösung wurde geschaffen:

Für die Raumelemente, die für die Modellierung des Direktabflusses genutzt werden (meist TGs oder KASKADENSEGMENTE), kann in der modul.ste über den  Eintrag  RH_GW Zuordnung der Anteil von RH angegeben werden, der ins Grundwasser versickern soll.

Eintrag in der modul.ste

RD_MODELL
RH_GW Zuordnung             0.1   /* gibt den Anteil des RH an, der nicht den    */
                               /* Vorfluter erreicht und ins GW versickert.   */
                               /* {0...1, default=0}                          */

Dieser globale Parameter kann räumlich differenziert untersetzt werden, wenn dem Cover, das für die RD-Modellierung genutzt, ein Attribut zugewiesen wird, das diesen Anteil für jedes Raumelement (hier TG) beinhaltet.

Fehlt die Angabe dieses Anteils, wird der default-Wert von Null verwendet.

Eintrag in tg.sdf

RH_GW_Zuordnung         RH2GW /* ist ein Attribut im ModellierungsCover für  */
                              /* RD (meist TGs), das  den Anteil des RH an-  */
                              /* gibt, der nicht den Vorfluter erreicht und  */
                             /* ins GW versickert. {0...1,default=0         */

In abflusslosen Gebieten wird für den (verbleibende) RH (sofern RH2GW < 1.) angenommen, dass er wieder oberflächlich austritt. Gemeinsam mit RO wird dieser RH-Anteil dem Muldenspeicher zugewiesen und über diesen erneut zur Versickerung angeboten.

Problematisch hierbei ist, dass dieses Wasser mehrfach, d.h. in mehreren Zeitschritten bilanziert wird, so dass hier die programminterne Erstellung der Gebietswasserbilanz nicht funktioniert.

Einschränkungen bei der Anwendung:

Nur für TG als Raumgliederung für Modellebene RD (lässt sich aber leicht auch auf KASKADEN übertragen)


7.6 Modellebene Basisabflusskonzentration – GW

Das Grundwassermodell

  • ordnet extern berechnete Grundwasserzuflüsse den Gewässerabschnitten zu
  • oder berechnet intern Grundwasserabflüsse für Teileinzugsgebiete oder das Gesamtgebiet bzw. Grundwasserzuflüsse für Gewässerabschnitte und stellt diese der nachgeordneten Modellebene Q zur Verfügung.

In welcher Form das Grundwassermodell arbeitet, wird in der Steuerdatei ARC_EGMO.STE (s. Kapitel 3) unter RAUMBEZUEGE_MODELLIERUNG, Option ABFLUSSKONZENTRATION_GW, sowie über die Steuerdatei MODUL.STE festgelegt.

Sollen Grundwasserzuflüsse, die extern z.B. mit einem detaillierten Grundwassermodell berechnet wurden, innerhalb eines komplexen Flussgebietsmodells genutzt werden, übernimmt die Programmkomponente FE (s. Kapitel 5.4) für diese Grundwasserzuflüsse

  • die räumliche Zuordnung zu Gewässerabschnitten und
  • die zeitgerechte Bereitstellung innerhalb des Simulationszyklus.

Das Grundwassermodell GW_MOD leitet diese Grundwasserzuflüsse dann lediglich an die nachfolgende Modellebene Q weiter.

Bei Verwendung „externer“ Grundwasserzuflüsse ist in der Steuerdatei ARC_EGMO.STE für ABFLUSSKONZENTRATION_GW die Option FE, für den GESAMTABFLUSS die Option FGW zu wählen.

Das interne Grundwassermodell wird aktiviert, wenn der Raumbezug in der Modellebene GW auf Teileinzugsgebiete TG, Regionen REG oder das Gesamtgebiet GEB gesetzt wurde. Es beruht auf Einzellinearspeicheransätzen, die entsprechend den vorhandenen Parametrisierungsmöglichkeiten unterschiedlich detailliert angewendet werden können. Da derzeit nur unzureichende Möglichkeiten existieren, die Einzellinearspeicherkonstanten C aus GIS-Informationen abzuleiten, müssen diese als einzulesender Parameter vorgegeben werden.

Auf Grund dieser Schwierigkeiten bei der Parameterschätzung ist es nicht sinnvoll, die quasi beliebig feine Diskretisierung bei der Abflussbildungsmodellierung für das Grundwasser beizubehalten.

Eine Zusammenfassung zu Abflusskomponenten ist angebracht, weil

  • z.B. durch die ortsunabhängige Hydrotopklassengliederung eine räumliche Zuordnung der Abflüsse ohnehin nicht möglich ist,
  • die Beschreibung der Abflusskonzentration deshalb generalisiert mit vereinfachten Ansätzen erfolgt und deren Modellparameter in der Regel aus beobachteten Ganglinien abgeleitet werden, was eine beliebige Differenzierung nicht zulässt und
  • eine zu große Anzahl von Abflusskomponenten auch interpretatorisch schwer handhabbar ist.

7.7 Modellebene Gesamtabfluss – Q

Diese Modellebene dient der Ermittlung des Gesamtabflusses als Überlagerung von Grundwasser- und Direktabfluss unter Berücksichtigung von Retentionseffekten. In das System integriert sind derzeit systemhydrologische Ansätze wie die Faltung und verschieden detaillierte Linearspeicherkaskaden (Parallel- und Reihenschaltung, Kalinin-Miljukov).

Die Faltung ist anwendbar, sofern als räumliche Diskretisierung in dieser Modellebene Teileinzugsgebiete, Modellregionen oder das Gesamtgebiet gewählt wurden.

Die Linearspeicherkaskade beschreibt die Abflusskonzentration in Abhängigkeit vom Gewässergefälle und der Gewässerlänge als Charakterisierung der Retention. Sie kann angewendet werden, wenn eine räumliche Diskretisierung der Modellebene Q in Gewässerabschnitte vorgenommen wurde. Es können aber auch Teileinzugsgebiete oder für großräumige Modellierungen Modellregionen oder das Gesamtgebiet gewählt werden. In diesen Fällen werden nicht mehr die Eigenschaften (Gefälle, Länge) des einzelnen Gewässerabschnittes, sondern die aller Gewässerabschnitte innerhalb dieser flächigen Raumuntergliederung berücksichtigt (z.B. mittleres Gefälle bzw. Summe aller Gewässerabschnittslängen innerhalb eines Teilgebietes).

Von großer Wichtigkeit für die Berechnung der Abflusskonzentration ist die richtige Wahl der Berechnungszeitschrittweite.

Dazu ist es notwendig, über den Abschnitt Q-Modell in der Steuerdatei Modul.Ste die Zeitschrittweite [Minuten] anzugeben, mit der im Regelfall die Konzentrationsrechnungen durchgeführt werden sollen. Der Zeitschritt ist in Abhängigkeit von der Detailliertheit der räumlichen Diskretisierung und den Gebietseigenschaften so zu wählen, dass die Gebietsdynamik angemessen beschrieben werden kann. Diese Zeitschrittweite sollte außerdem kleiner oder gleich der Zeitauflösung der meteorologischen Daten sein.

Der so vorgegebene Standardzeitschritt wird in Abflussbildungsperioden aus Stabilitätsgründen programmintern verringert.

###############################################################################
Q_MODELL
ZEITSCHRITTWEITE       1440.   /* in Minuten */
###############################################################################

Abbildung 7.7‑1: Steuerdatei MODUL.STE – Block Q_MODELL

Nach oben scrollen