4.4.6 Management

4.4.6.1 Modellkonzept

Die Erfassung des realen Managements auf den landwirtschaftlichen Flächen des Untersuchungsgebietes ist von entscheidender Bedeutung für die Simulationsgüte.

Benötigt werden Informationen

  • zum Fruchtartenspektrum (Fruchtfolgen),
  • zu den Bearbeitungsterminen (Saat, Düngung, Grünschnitt, Ernte) und
  • den Düngermengen und -formen.

In der Regel kann nicht davon ausgegangen werden, dass diese Angaben für jeden Einzelschlag verfügbar sind. Außerdem wäre diese Datenflut für meso- bis makroskalige Modellanwendungen nicht mehr handhabbar. Andererseits kann für kleinskalige Anwendungen z.B. auf Betriebsebene eine möglichst exakte Verarbeitung aller vorhandenen Informationen erforderlich werden. Deshalb wurde ein Managementmodell für VEGEN entwickelt, das entsprechend der Aufgabenstellung und Datenverfügbarkeit eine flexible Verarbeitung erlaubt. Alle Verfahren zur Erfassung der Bewirtschaftung der landwirtschaftlich genutzten Flächen greifen auf dieselben Basisdaten zu, die um weitere Informationen ergänzt werden können.

4.4.6.2 Basisdaten

Die Basisdaten (Stammdaten) stellen eine Sammlung von durchschnittlichen Eigenschaften der gebräuchlichsten Fruchtarten und Wirtschaftsdünger in Deutschland dar. Als Grundlage wurden dafür die von den Ländern veröffentlichten Richtwerte für die Umsetzung der Düngeverordnung und die Empfehlungen des Verbandes Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) herangezogen (LVLF/LFBMV/LLFG 2008; TLL 2007; LfL Bayern 2007). Weitere Parameter, wie z.B. die Umsatz- und Humusreproduktionskoeffizienten der organischen Düngertypen und der Ernte- und Wurzelreste (EWR), wurden der Literatur entnommen (z.B. Franko, 1990).

Im Einzelnen werden folgende Datentabellen benötigt, die über Schlüsselwörter miteinander verknüpft sind:

Tabelle Inhalt
Management Fruchtart (Schlüssel zu den Tabellen ‚Pflanzenparameter’, ‚Nährstoffbedarf’),
benötigte Wärmesummen bis zur Reife,
mittlere Saat- und Erntetermine als Terminangabe und in Anteilen der akkumulierten Wärmesummen frPHU,
Pflanzenparameter Fruchtart (Schlüssel zur Tabelle ‚Management’),
Parameter für Simulation der Phänologie und des Wachstums (s. Kap. 4.4.2),
Zuordnung der Fruchtart zu einem Pflanzentyp (EWR-Typ)
Ernte- und Wurzelreste (EWR) Pflanzentyp (Schlüssel zur Tabelle “Pflanzenparameter’), C/N-Verhältnisse und Umsatzkoeffizienten, unterteilt für die oberirdischen Erntereste und die Wurzelreste
Nährstoffbedarf Fruchtart (Schlüssel zur Tabelle ‚Management’),
Gesamt-N-Bedarf für mittleres Ertragspotenzial,
Gesamt-P-Bedarf für mittleres Ertragspotenzial,
Ab- bzw. Zuschlag für geringere bzw. höhere Ertragserwartung,
Anzahl und Aufteilung der Düngergaben,
mittlere Düngetermine
Wirtschaftsdünger Typ,
C/N-Verhältnisse und Umsatzkoeffizienten,
Ausbringungstermine und Anteil der Mengen

Die Vorhaltung der Basisparametrisierung in fünf unterschiedlich dimensionierten Tabellen erlaubt eine flexible Anpassung der Datenbasis. So kann die Anzahl der in der Tabelle ‚Management’ vorgehaltenen Fruchtarten auf die im Simulationszeitraum im Gebiet angebauten begrenzt werden, ohne den Informationsumfang der übrigen Tabellen einschränken zu müssen. Alle Tabellen können bei Bedarf jederzeit erweitert werden, wenn die Basisinitialisierung den aktuellen Anforderungen hinsichtlich EWR-, Frucht- und Wirtschaftsdüngerarten nicht genügt, bzw. weitere Nährstoffe bei der Simulation berücksichtigt werden sollen.

Die Zuordnung der einzelnen Fruchtarten zu Pflanzentypen hinsichtlich ihrer Ernte- und Wurzelreste (Getreide, Rüben, Laubbäume, Nadelbäume, etc.) dient einerseits der Minimierung der benötigten Eingangsdaten, und ist andererseits der Unschärfe dieser Stoffumsatzparameter geschuldet.

4.4.6.3 Standardmanagement (Basisversion)

Die Standardinitialisierung des Bewirtschaftungsregimes erfolgt auf der Basis der Landnutzungstypen. Diesen wird, sofern auf ihnen ein Fruchtwechsel stattfindet, eine regional typische Fruchtfolge zugewiesen. Für die jeweiligen Einzelflächen werden dann die Bewirtschaftungstermine sowie die ausgebrachten Düngermengen aus den Basisdaten berechnet. Dabei wird neben dem Ertragspotenzial auch der aktuelle Nmin-Gehalt des Bodens (NO3– und NH4-Stickstoff in 0-90 cm Tiefe) berücksichtigt.

Düngergaben werden ausschließlich als mineralisch betrachtet. Es wird davon ausgegangen, dass die Hälfte des aufgebrachten Düngers (Stickstoff und/oder Phosphor) auf der Bodenoberfläche verbleibt. Die übrige Menge wird den entsprechenden Pools der ersten Bodenschicht zugeordnet. Bei der mineralischen Stickstoffdüngung erfolgt keine Unterteilung in die unterschiedlichen Bindungsformen, da sie aus dem Gesamt-N-Bedarf der Fruchtart abgeleitet wird. Pro Düngergabe erfolgt eine Aufteilung der applizierten N-Menge in Nitrat- und Ammonium-Stickstoff im Verhältnis Zwei zu Drei.

Die Abschätzung der Ertragspotenziale erfolgt anhand der Bodenkarte bei Berücksichtigung von sechs Bodenartengruppen nach VDLUFA, die vorerst drei Ertragspotenzialen (niedrig/mittel/hoch) zugeordnet werden.

Problematisch ist die feste Vorgabe von Saat- und Düngeterminen als langjährige Mittelwerte. Je nach Witterung und Befahrbarkeit des Bodens können die tatsächlichen Saattermine deutlich von diesen Mittelwerten abweichen. Das kann bislang im Modell nicht abgebildet werden. Die vorgegebenen Erntetermine werden jedoch entsprechend des durch die Pflanze aufgenommenen Anteils der potenziell akkumulierbaren Wärmeeinheiten frPHU in einem begrenzten Zeitrahmen (± 10 d) korrigiert.

Die in den auf der Fläche verbliebenen oberirdischen Ernteresten enthaltenen Phosphor-, Kohlenstoff- und Stickstoffmengen werden den jeweiligen PPOM-, NPOM– and CPOM-Pools der ersten Bodenschicht zugeordnet. Die in den Wurzelresten enthaltenen C-, N- und P-Mengen werden entsprechend der Wurzelverteilung den OPS-Pools der jeweiligen Bodenschicht hinzugefügt (s. Kap. 7.2 und 8.3).

4.4.6.4 Geostatistisches Verfahren für Anbauregionen

Liegen räumlich detailliertere Informationen zur Fruchtartenverteilung (z.B. jährliche Anbaustatistik auf Kreisebene oder Bewirtschaftungsszenarien) vor, so können den einzelnen Flächen eines Landnutzungstyps mittels eines geostatistischen Verfahrens („Fruchtfolgengenerator“) unterschiedliche Fruchtfolgen zugeordnet werden. Die Berechnung des Managements der einzelnen Fruchtarten erfolgt wie beim Standardmanagement. Dieses Verfahren eignet sich besonders für mesoskalige Modellanwendungen. Ein Anwendungsbeispiel für Thüringen geben Klöcking et al. (2003).

4.4.6.5 Schnittstelle zu Raumdatenbanken

Für die Verarbeitung von regional vorhandenen räumlich und zeitlich hoch aufgelösten Informationen zur Bewirtschaftung der landwirtschaftlichen Flächen (z.B. aus dem Datenspeicher InVeKoS) wurde eine Schnittstelle geschaffen. Über diese werden jährliche Angaben zur Hauptfruchtart und den ausgebrachten Düngermengen und –formen pro Einzelfläche berücksichtigt. Bei den Einzelflächen kann es sich um die jeweiligen Schläge oder um eine Zelle eines landesweiten Rasters handeln. Liegen diese Informationen nicht für alle landwirtschaftlichen Flächen vor, so wird hier auf das Standardmanagement oder auf die mit dem Fruchtfolgengenerator erzeugten und verteilten Fruchtfolgen zurückgegriffen.

Die Informationen aus dem Datenspeicher werden in Form externer Dateien im ASCII- oder dBase-Format verwaltet, die über den Raumbezug mit den Modellflächen von ArcEGMO verknüpft sind (s. Kapitel „Externe Daten – Schnittstellen“ in der ArcEGMO-Dokumentation). Pro Jahr liegt eine Datei vor, die folgende Angaben enthält:

  • Raumbezug (ID/Schlüssel zur ArcEGMO-Hydrotopkarte für das Untersuchungsgebiet),
  • angebaute Hauptfruchtart (Schlüssel zur Tabelle ‚Management’),
  • N-Sollwert Nsoll entsprechend der Ertragserwartung [kg N/ha],
  • über Wirtschaftsdünger ausgebrachte Stickstoffmenge Nforg [kg N/ha],
  • Typ des Wirtschaftsdüngers (Schlüssel zur Tabelle ‚Wirtschaftsdünger’).

Zusätzlich können Angaben zu gemessenen Boden-Nmin-Werten Nmin als Startwerte eingelesen werden.

Die tatsächlich als Mineraldünger ausgebrachte Stickstoffmenge Nfmin wird dann wie folgt berechnet:

\fn_jvn N^{f}_{min}=max(o,N_{soll}-0,6N^{f}_{org}-N_{min})
(39)

 

Zu Simulationsbeginn wird dabei der Nmin-Startwert genutzt. In den Folgejahren wird der simulierte aktuelle Nmin-Gehalt des Bodens (NO3– und NH4-Stickstoff in 0-90 cm Tiefe) verwendet.

Die Simulation der Aufteilung der Düngermengen auf die einzelnen Ausbringungstermine sowie Saat und Ernte erfolgt dann wie im Standardmanagement entsprechend der Basisvorgaben. Die im ausgebrachten organischen Dünger enthaltenen Phosphor-[1], Kohlenstoff- und Stickstoffmengen werden den jeweiligen POM-Pools der ersten Bodenschicht zugeordnet (s. Kap. 7.2 und 8.3).

4.4.6.6 REPRO-Schnittstelle

Das Modell REPRO (Hülsbergen, 2003) ist ein Instrument zur Abbildung eines landwirtschaftlichen Betriebes als Gesamtsystem und zur Bewertung der ökologischen und ökonomischen Nachhaltigkeit der landwirtschaftlichen Produktion in Bezug auf die Schutzgüter Boden, Wasser und Luft. Im Mittelpunkt der Software REPRO steht die detaillierte Abbildung betrieblicher Stoff- und Energieflüsse auf verschiedenen Ebenen.

Im Rahmen der Entwicklungsarbeiten am Prognoseinstrument ReArMo (gekoppeltes Modell REPRO-ArcEGMO-MODFLOW-MT3D) wird derzeit diese Schnittstelle realisiert, die die Erfassung der realen Bewirtschaftung auf Teilschlagebene erlaubt (Pfützner et al., 2011).


[1] organische Phosphordüngung z.Z. (2012) noch nicht untersetzt

Nach oben scrollen