04.4.2 Phänologie und Wachstum

Die phänologische Modellierung folgt der „Heat Unit Theory“. Dieser Temperatursummenansatz beruht auf der Annahme, dass das Wachstum der Vegetation vor allem von der Temperatur gesteuert wird (Boswell, 1926). Bei jeder Pflanze muss eine festgelegte Basistemperatur erreicht werden, bevor das Wachstum beginnt. Über dieser Schwellentemperatur beschleunigt sich das Wachstum mit steigenden Temperaturen bis zu einer Optimaltemperatur. Steigt die Tagesmitteltemperatur über die Optimaltemperatur, verlangsamt sich das Wachstum wieder. Jedoch wird z. Z. noch keine Maximaltemperatur, oberhalb derer es zu Pflanzenschäden kommt, berücksichtigt. Eine „Heat Unit“ (HU) ist dabei die Differenz aus der Mitteltemperatur eines bestimmten Tages und der pflanzenspezifischen Minimaltemperatur. Die Ausbildung bestimmter phänologischer Stadien erfolgt anhand pflanzenspezifischer kumulierter HU.

Das Pflanzenwachstum erfolgt direkt proportional zur zugehörigen HU, begrenzt durch Stressbedingungen (Temperatur, Wasser-, Nährstoffmangel). Eine zentrale Stellung kommt dabei der Entwicklung des Blattflächenindex zu. Abb. 4‑3 zeigt die „optimal leaf area development curve“ in Abhängigkeit von den akkumulierten Wärmeeinheiten und sortenspezifischen Parametern. Alle übrigen Vegetationsgrößen (Biomasse, Ertrag, Wurzeltiefe, etc.) sowie die potenzielle Nährstoff- und Wasseraufnahme werden direkt oder indirekt in Abhängigkeit vom LAI berechnet.

 

image

Abb. 4‑3: Entwicklung des Blattflächenindexes LAI entsprechend der akkumulierten Wärmesummen frPHU

 

Blattflächenindex

Für ein- und mehrjährige Pflanzen wird die am Tag i potenziell hinzugekommene Blattfläche wie folgt berechnet:

\small \fn_jvn \Delta LAI_{i}=(fr_{LAImax,i}-fr_{LAImax,i-1})*LAI_{max}*(1-exp(5*(LAI_{i-1}-LAI_{max})))
(10)

 

mit

\fn_jvn fr_{LAIm\: ax}=\frac{LAI}{LAI_{max}}=\frac{fr_{PHU}}{fr_{PHU}+exp(l_{1}-l_{2}*fr_{PHU})}
(11)

 

\fn_jvn fr_{PHU}=\frac{\sum_{i=1}^{d}HU_{i}}{PHU}
(12)

 

\fn_jvn l_{1}=ln\left [ \frac{fr_{PHU}^{1}}{fr_{LAI}^{1}}-fr_{PHU}^{1} \right ]+l_{2}*fr_{PHU}^{1}
(13)

 

\fn_jvn l_{2}=\frac{ln\left [ \frac{fr_{PHU}^{1}}{fr_{LAI}^{1}}-fr_{PHU}^{1} \right ]-ln\left [ \frac{fr_{PHU}^{2}}{fr_{LAI}^{2}}-fr_{PHU}^{2} \right ]}{fr_{PHU}^{2}-fr_{PHU}^{1}}
(14)

 

 

HU heat unit [K]
PHU potential heat units = benötigte Wärmesummen bis zum Erreichen der Reife (pflanzenspezifisch) [K]
frPHU Anteil der potenziell akkumulierbaren Wärmeeinheiten PHU
frLAImax Anteil des maximalen Blattflächenindexes, der zu der aktuellen HU dieser Pflanze korrespondiert
LAImax maximal erreichbarer Blattflächenindex (Pflanzenartspezifisch)
frPHU1 Anteil der potenziell akkumulierbaren Wärmeeinheiten bei frLAImax1 (erster Formparameter der optimalen LAI-Entwicklungskurve)
frPHU2 Anteil der potenziell akkumulierbaren Wärmeeinheiten bei frLAImax2 (zweiter Formparameter der optimalen LAI-Entwicklungskurve)
frLAImax1 Anteil des maximalen Blattflächenindexes, bei frPHU1
frLAImax2 Anteil des maximalen Blattflächenindexes bei frPHU2
l1,l2 Formfaktoren der optimalen LAI-Entwicklungskurve

Für Bäume gilt[1]:

\fn_jvn \Delta LAI_{i}=(fr_{LAImax,i}-fr_{LAImax,i-1})*\left ( \frac{yr_{_{cur}}}{yr_{_{fulldev}}} \right )*LAI_{max}*\left ( 1-exp\left ( 5*\left ( LAI_{i-1}-\left ( \frac{yr_{_{cur}}}{yr_{_{fulldev}}} \right )*LAI_{max} \right ) \right ) \right )
(15)

 

γrcur aktuelles Baumalter [a]
γrfulldev Baumalter bei voller Entwicklung [a]

Das potenzielle Wachstum wird durch ungünstige Lufttemperaturen, Wasser- und Nährstoffmangel reduziert. Der Stressfaktor γreg (0, 1) wird wie folgt täglich berechnet:

\fn_jvn \gamma _{reg}=1-max(\gamma _{w},\gamma _{LT},\gamma _{N},\gamma _{P})
(16)

γW Trockenstress [-]
γLT Temperaturstress [-]
γN Stress durch Stickstoffmangel [-]
γP Stress durch Phosphormangel [-]

\fn_jvn \gamma _{w}=1-\frac{E_{TR}}{E_{TRp}}
(17)

 

ETRp potenzielle Transpiration [mm/d] (s. Kapitel 2)
ETR aktuelle Transpiration [mm/d]

\fn_jvn \gamma _{LT}=\begin{cases} & \; \; \; \; \; \; \; \; \; \; \; \; 1 \: \! \; \; \; \; \; \; \; \; \; \; \; \; \; \; \Leftrightarrow LT\leq T_{base} \\ & 1-exp\left [ \frac{-0,1054*(T_{opt}-LT)^{2}}{(LT-T_{base})^{2}} \right ]\Leftrightarrow T_{base}< LT\leq T_{opt} \\ & 1-exp\left [ \frac{-0,1054*(T_{opt}-LT)^{2}}{(2*T_{opt}-LT-T_{base})^{2}} \right ]\Leftrightarrow T_{opt}< LT\leq 2*T_{opt}-T_{base} \\ &\; \; \; \; \; \; \; \; \; \; \; \; 1\: \! \; \; \; \; \; \; \; \; \; \; \; \; \; \;\Leftrightarrow LT> 2*T_{opt}-T_{base} \end{cases}
(18)

 

 

 

LT Lufttemperatur (Tagesmittel) [°C]
Tbase Basistemperatur für das Pflanzenwachstum [°C]
Topt Optimaltemperatur für das Pflanzenwachstum [°C]

\fn_jvn \gamma _{N}=1-\frac{\varphi _{n}}{\varphi _{n}+exp\left [ 3,535-0,02597*\varphi _{n} \right ]}
(19)

 

\fn_jvn \varphi _{n}=200-\left ( \frac{bio _{N}}{bio _{N,opt}}-0,5 \right )
(20)

 

φn Skalierungsfaktor für N-Mangelstress [-]
bioN Stickstoffmenge in der Pflanzenbiomasse [kg N/ha]
bioN,opt optimaleStickstoffmenge in der Pflanzenbiomasse für den aktuellen Entwicklungszustand [kg N/ha], s. Kapitel 4.4.4

Der Phosphormangelstress γP wird analog mit dem Parameter bioP,opt berechnet.

Da VEGEN auch allein zur Wasserhaushaltssimulation ohne Simulation des C/N- und des Phosphorhaushaltes genutzt werden kann, werden in diesem Anwendungsfall die beiden Nährstoffstressterme modellintern auf Null gesetzt.

Der aktuelle Blattflächenindex berechnet sich somit unter Berücksichtigung des Stressfaktors zu

\fn_jvn LAI_{i}=LAI_{i-1}+\Delta Lai_{i}\sqrt{\gamma _{reg}}
(21)

 

γreg – täglicher Stressfaktor (0,1)

Mit Erreichen einer Entwicklungsstufe, ab der die Seneszenz der dominierende Wachstumsprozess wird (frPHU,sen), beginnt die Blattalterung. Die Abnahme des Blattflächenindex wird nun wie folgt berechnet:

Annuelle und mehrjährige Pflanzen:

\fn_jvn LAI=LAI_{max}*\frac{(1-fr_{PHU})}{(1-fr_{PHU,\: sen})}
(22)

 

Bäume:

\fn_jvn LAI=\left ( \frac{yr_{cur}}{yr_{fulldev}} \right )*LAI_{max}*\frac{(1-fr_{PHU})}{(1-fr_{PHU,\: sen})}
(23)

 

 

Vegetationshöhe

Die Vegetationshöhe hc von landwirtschaftlichen Pflanzen wird dann über folgende Gleichung bestimmt:

\fn_jvn h_{c}=h_{c,max}*\sqrt{fr_{LAI_{max}}}
(24)

 

hc – Vegetationshöhe [m]
hc,max – maximale Vegetationshöhe (sortenspezifisch) [m]

Die Vegetationshöhe von Bäumen wird nach folgendem Verfahren ermittelt:

\fn_jvn h_{c}= h_{c,max}*\left ( \frac{yr_{cur}}{yr_{fulldev}} \right )
(25)

 

 

Wurzelentwicklung

Die Wurzelentwicklung basiert ebenfalls auf dem Konzept der „Heat Units“. Der Biomasseanteil der Wurzeln an der gesamten Biomasse frroot variiert zwischen 0,4 bei Wachstumsbeginn und 0,2 bei voller Entwicklung (Neitsch et al., 2005):

\fn_jvn fr_{root}=0,4-0,2*fr_{PHU}clip_image036
(26)

 

Die Berechnung der Wurzeltiefe zroot variiert mit den verschiedenen Pflanzenarten. Es wird angenommen, dass mehrjährige Pflanzen und Bäume Wurzeln besitzen, die bis zur sortenspezifischen maximalen Tiefe zroot,max reichen, wenn der Boden soweit durchwurzelbar ist. Ansonsten wird die Wurzeltiefe vom Boden vorgegeben. Für annuelle Pflanzen wird die Wurzeltiefe wie folgt berechnet:

\fn_jvn z_{root}=\begin{cases} & 2,5*fr_{root}*z_{root,max}\Leftrightarrow fr_{PHU}\leq 0,4 \\ & z_{root,max}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \! \Leftrightarrow fr_{PHU}> 0,4 \end{cases}
(27)

 

 

Biomassezuwachs

Die Zunahme der Biomasse Δbio pro Tag hängt von der spezifischen „radiation-use-efficiency“ RUE einer Pflanze und der aktuell aufgenommenen photosynthetisch aktiven Strahlung Rphosyn ab (Monteith, 1977). Sie wird über den Stressfaktor γreg (Gleichung 16) begrenzt.

\fn_jvn \Delta bio=RUE*R_{phosyn}\gamma_{reg}
(28)

 

bio Biomasse [kg/ha]
RUE „radiation-use-efficiency“ [kg/ha (MJ/m²)-1]
Rphosyn photosynthetisch aktive Strahlung [MJ/m²]

Die durch die Pflanze aufgenommene photosynthetisch aktive Strahlung wird nach dem Beer-Gesetz (Monsi & Saeki, 1953) berechnet:

\fn_jvn R_{phosyn}=0,5R_{g}(1-exp(k_{I}LAI))
(29)

 

Rg Globalstrahlung [MJ/m²]
kl Lichtextinktionskoeffizient (-0,65 für alle Pflanzentypen)
LAI Blattflächenindex

Entsprechend Stockle und Kiniry (1990) wird die RUE durch das Dampfdruckdefizit vpd gesteuert:

\fn_jvn RUE=\begin{cases} & RUE_{vpd=1}-\Delta rue_{dcl}(vpd-vpd_{thr})\Leftrightarrow vpd>vpd_{thr} \\ & \; \; \; \; \; \; RUE-{vpd=1}\; \;\; \; \; \; \; \! \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \Leftrightarrow vpd\leq vpd_{thr} \end{cases}
(30)

 

RUEvpd=1 „radiation-use-efficiency“ einer Fruchtart bei einem Dampfdruckdefizit von 1 kPa [kg/ha (MJ/m²)-1]
vpdthr Schwellenwert für das Dampfdruckdefizit (=1 kPA für alle Pflanzen)
Δruedcl Abnahme der RUE mit Anstieg des Dampfdruckdefizits [kg/ha (MJ/m²)-1kPa-1]


[1] Mehrjährige LAI-Berechnung für Bäume z.Z. noch nicht implementiert

Nach oben scrollen